

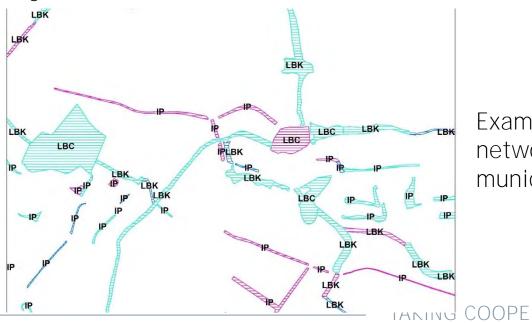
MaGICLandscapes

TAKING COOPERATION FORWARD

10th IALE World Congress, July 1-5 2019, Milano, Italy

Hana Skokanová, Tomáš Slach, Silva Tarouca research Institute

- Interconnected system of natural as well as modified but near natural ecosystems keeping natural balance = existing as well as non-existing designed network
- Integral part of municipalities[•] territorial plan
- Goals: sources of the natural genetic material, support of ecological stability, support of landscape-forming functions
- Purpose:
 - To delineate large enough plots supporting survival of species
 - To delineate routes with relatively undisturbed species movement
 - To create optimal spatial distribution of ecologically more stable plots
 - To divide ecologically less stable plots



- Delineation based on many different ecological & landscape ecological theories
- Different typology:
 - According to biogeographic significance
 - local,
 - regional,
 - supra-regional
 - According to degree of anthropogenic impact
 - natural (e.g. forests),
 - dependent on anthropogenic activites (e.g. meadows)
 - According to types of natural environment
 - terrestrial,
 - water

- Three parts:
 - bio-centres plots that due to their size & state of ecological conditions enable permanent existence of species & communities,
 - bio-corridors plots/corridors enabling movement of organisms between biocentres which they physically connect,
 - interaction elements stepping stones for migration/permanent existence of organisms, smaller then bio-centres & bio-corridors, usually linear

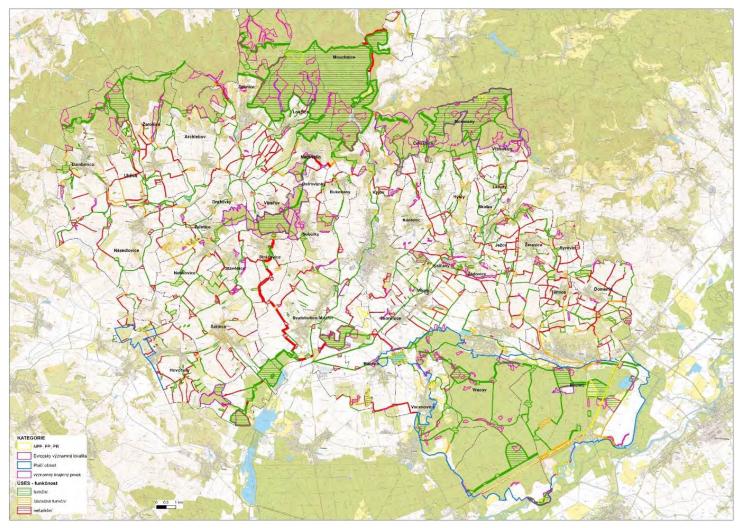
Example of designed TSES network in a Kyjovsko municipality of **Kelčany**

COOPERATION FORWARD

 Three levels - local, regional, supra-regional - differ in size minimal spatial parameters

Bio-centre

level	type of habitat	minimum size in ha	
	forest	3	
Local	wetland	1	
	meadow	3	
Regional	forest	20-46*	
	wetland	10	
	meadow	30	
Supra- regional	forest	1000	


* Depends on vegetation grade, and type of biochore

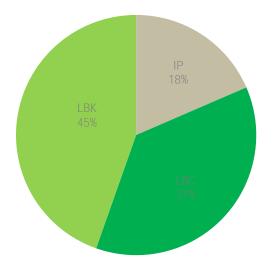
level	type of habitat	minimum width in m	maximum length in m
	forest	15	2000
Local	wetland	20	2000
	meadow	20	1500
	forest	40	700
Regional	wetland	40	1000
	meadow	50	500-700
Supra- regional	forest	40	8000

Bio-corridor

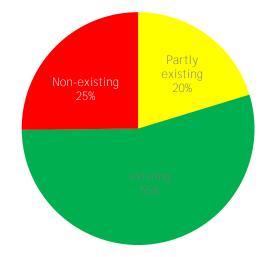
CASE STUDY KYJOVSKO

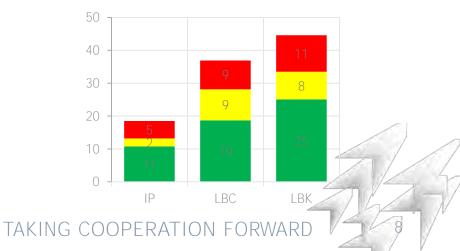
- 42 municipalities, 470 km²
- Lowland area (200-300 m ASL)
- Very warm and dry
- 67 % used for agriculture - large arable fields (54%), very few Gl elements
- forests 22 %

SOURCES AND METHODS

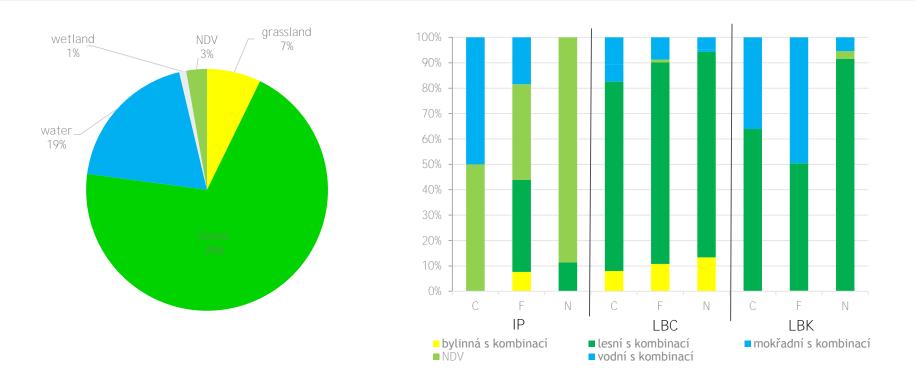


- Territorial plans of municipalities different period of creation (1999-2017)
- 6 municipalities in vector formant, the rest (38) necessary to vectorize
- Categorization existing, partly existing, non-existing based on ortophoto 2016
- Based on territorial plans acquisition of target habitats -forest, grassland, water, wetland, non-forest woody vegetation
- Land cover combination of data from LPIS, cadastre, biotope mapping,
 ZABAGED, ÚHUL, manual vectorization & verification based on 2016 ortophoto
- GI two groups:
 - Narrow only grasland, woody vegetation, water & wetland elements
 - Broader also small holdings, vineyards, orchards, ruderal vegetation
- GUIDOS toolbox MSPA analysis and Euclidian distance analysis for connectivity comparison of narrow GI, broader GI, narrow GI with TSES and broader GI with TSES


RESULTS - PRESENCE OF TSES ELEMENTS

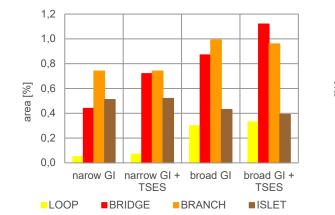


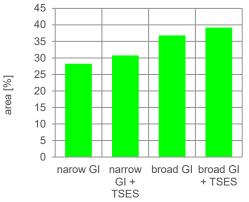
Share on individual categories



Share on overal TSES

RESULTS - TARGET HABITATS





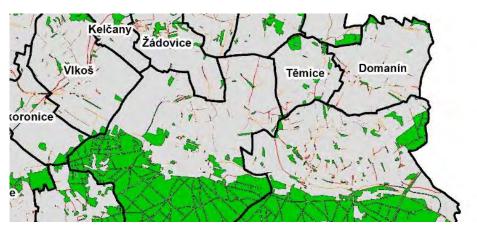
- Not all TSES elements have recorded target habitats, target habitats specified for 46 %, mainly bio-centres & bio-corridors
- Forest dominate, also highly present grassland, water with combination of other habitats (riparian vegetation, grasslands, forests)


RESULTS - MSPA ASSESSMENT

8000 7000 6000 5000 number 4000 3000 2000 1000 0 narow GI narrow GI broad GI broad GI + + TSFS TSFS BRIDGE ISLET CORE

Narow x broad GI

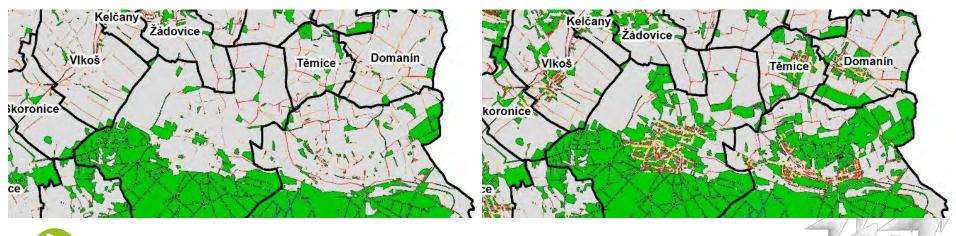
- Increase in the areas & numbers of cores & bridges better connectivity
- Increase in the area & numbers of branches & loops (loops - usual gardens)
- Decrease in the area & numbers of islets


GI & TSES

- Decrease of areas & numbers branches - TSES elements (bio-corridors) connect GI elements
- Increase in areas but decrease in numbers of cores - TSES elements broaden and unite existing cores

RESULTS - MSPA ASSESSMENT

GI narow - grassland, woody, water, wetland



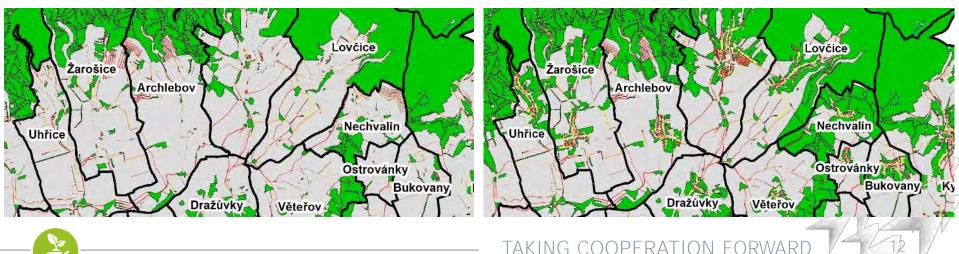
GI narow - grassland, woody, water, wetland + TSES

GI broad - small holdings, vineyards, orchards, ruderal

GI broad - small holdings, vineyards, orchards, ruderal + TSES

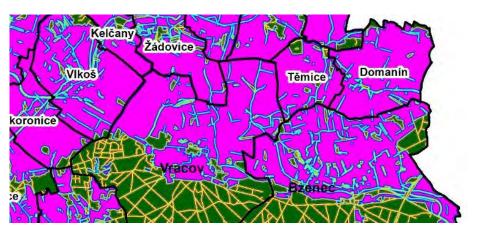
RESULTS - MSPA ASSESSMENT

GI narow - grassland, woody, water, wetland

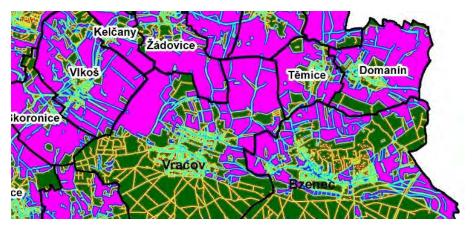


GI narow - grassland, woody, water, wetland + TSES

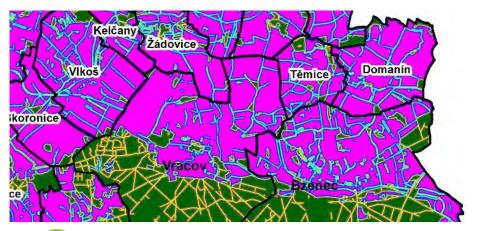
GI broad - small holdings, vineyards, orchards, ruderal

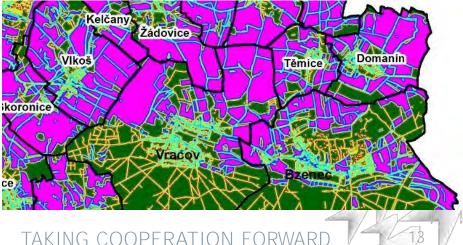

GI broad - small holdings, vineyards, orchards, ruderal + TSES

RESULTS - EUCLIDIAN DISTANCES



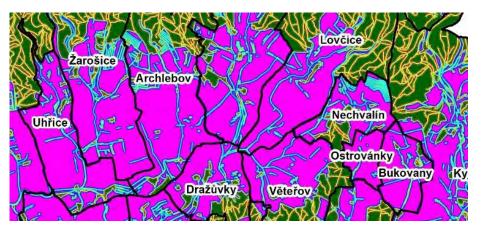
GI narow - grassland, woody, water, wetland



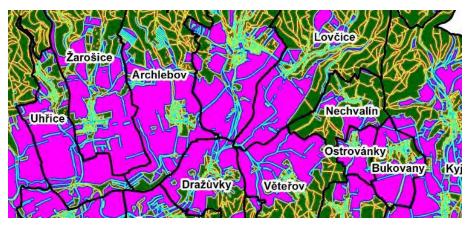

GI narow - grassland, woody, water, wetland + TSES

GI broad - small holdings, vineyards, orchards, ruderal

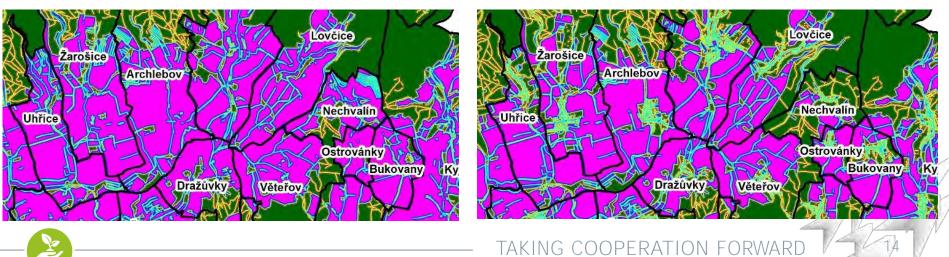
GI broad - small holdings, vineyards, orchards, ruderal + TSES



RESULTS - EUCLIDIAN DISTANCES



GI narow - grassland, woody, water, wetland



GI narow - grassland, woody, water, wetland + TSES

GI broad - small holdings, vineyards, orchards, ruderal

GI broad - small holdings, vineyards, orchards, ruderal + TSES

One of the first planted corridors in the CZ between **Vracov and Vlkoš**, realized in the early 1990s - the biotope is fully developed

Newly planted bio-corridor in Vlkoš municipality

Newly planted bio-centre in Vlkoš municipality


Bio-centre as well as protected area near Bohuslavice

Sometimes already existing GI elements are declared as bio-centres, example from Bohuslavice

Lanscape near Čeložnice where a new bio-corridor is supposed to be planted

Lanscape near Bohuslavice where a new bio-corridor is supposed to be planted - between vineyards

THANKS FOR LISTENING

	5	77	l
١			ľ
			J

Hana Skokanová

Department of Landscape Ecology, VÚKOZ, v.v.i. MaGICLandscapes

- www.interreg-central.eu/Content.Node/MaGICLandscapes
- 🖂 hanka@skokan.net
 - +42 0 541 126 253
- f
- https://www.facebook.com/MaGICLandscapesCzech/

https://www.researchgate.net/project/Managing-Green-Infrastructure-in-Central-European-Landscapes-MaGICLandscapes

