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1. Introduction  

The Deliverable D.T2.1.1 is aimed at supporting the development of the Toolbox CC-ARP-CE by assessing 

the variations, potentially due to climate change, between future time spans and the reference one in 

climate indicators assumed as proxies for several impacts that could affect the water management in Central 

Europe. Fifty-three indicators have been selected accounting for Project Partners and stakeholders’ 

requirements collected by using a web-survey (see D.T1.1.3) or during the stakeholder workshops held in 

Autumn 2020. Furthermore, a sub-sample of indicators has been first computed within PROLINE-CE 

INTERREG Project. 

The indicators have been assessed by exploiting the modeling chains included in EURO-CORDEX initiative 

(Jacob et al., 2014). It represents the European branch of “the international [Coordinated Regional 

Downscaling Experiment] CORDEX initiative, which is a program sponsored by the World Climate Research 

Program (WRCP) to organize an internationally coordinated framework to produce improved regional climate 

change projections for all land regions world-wide”. Specifically, the outputs are provided by nineteen 

modeling chains where the dynamical downscaling of Global Climate Models has been carried out at a 

horizontal resolution of about 12 km (0.11°). Moreover, two scenarios for the future concentrations of 

climate-altering gases: the Representative Concentration Pathway (RCP) 4.5 considered as “mid-way 

scenario” and RCP8.5 assumed as the most pessimistic one. The variations under the two RCPs are computed 

for two future time spans: 2021-2050 and 2071-2100 while 1971-2000 is considered as the reference thirty 

years.  

In this regard, such Deliverable should be viewed as a sort of an Engineering Guide supporting the informed 

adoption of the information provided by the indicators. To this aim, the section 1 provides details about the 

modeling chains adopted to derive the weather forcing required for the computation of the indicators. 

Section 2 reports the table where all the indicators are recalled and described. Finally, Section 3 reports 

brief insights for a proper interpretation of the results and their use from the practitioners. 
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2. Description of the modeling chains 

The climate indicators are computed by exploiting a widely consolidated simulation chain according to 

which: 

Based on assumptions about future evolutions of economic development/growth and demographic changes 

at global and regional scale, Integrated Assessment Models (IAM) provide evaluations for future 

concentrations of greenhouse gases (GHG), aerosols, chemically active gases (climate-altering gases) and 

changes in land use over the next centuries. In this regard, Intergovernmental Panel on Climate Change 

(IPCC) has selected four reference standard pathways (commonly known as RCP Representative 

Concentration Pathways) allowing subsequent analysis by means of Climate models (CMs) following 

reference assumptions about baselines and starting points and permitting the comparisons among climate 

projections. The four pathways respectively estimate an increase in radiative forcing levels of 8.5, 6, 4.5 

and 2.6 W/m2, by the end of the century compared to pre-industrial era (1750). Of course, the first one is 

recognized as more pessimistic under which no or very limited mitigation measures are implemented and 

the last one more optimistic and feasible only assuming high mitigation measurements (Figure 8). More 

specifically, RCP2.6 should be the only one permitting to achieve the Paris Agreement targets.  

Figure 1: left) expected trends in radiative forcing following the different RCPs 

[Meinshausen et al.,2011]; right) assessed increases in global temperature and emissions 

under the different concentration scenarios 

  

 

Such assessments are used as forcing for Global Climate Models (GCMs). They are numerical and physically-

based representation of the atmospheric processes aimed to assess the impacts on the climate system of 

variations of greenhouse gases. Nevertheless, due to their coarse horizontal resolution (at the moment, 

hardly exceeding 70-80km) they are able to simulate only large-scale atmospheric state (IPCC, 2014). 

Numerous studies (IPCC, 2014) show that they are able to reproduce the climate and the global response to 

the changes of climate-altering gases with higher reliability for some variables (temperature) and lower for 

others (precipitation). However, despite significant developments in recent years (Figure 2) permitting to 

account for also biogeochemical processes in the last generation of Earth System Models, because of the 

horizontal resolutions today permitted, these models are inadequate for estimates of trends and impacts at 

the local/regional level for which the features of the area (distance from the sea, topography) are crucial 

(even with respect of large-scale atmospheric circulation). GCMs used for the assessments of the indicators 

have been produced in the framework of the Coupled Model Intercomparison Project Phase 5 (CMIP5) 

initiative exploiting as forcing RCPs. Within the sixth phase (CMIP6), CMIP6 will consist of the “runs” from 

around 100 distinct GCMs from 49 different modelling groups are expected to be run to produce updated 

climate projections exploiting also information from Shared Socioeconomic Pathways (SSPs) 
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Figure 2: The evolution of Global models in terms of considered physical dynamics (from 

Wilby, 2017) 

 

 

To improve the assessments at regional scale, several techniques were developed in last years; they largely 

differ for computational costs, prerequisites, and limitations; they are classifiable as "statistical" and 

"dynamical" downscaling approaches. The first ones adopt frameworks based on empirical statistical 

relationships between "predictors" large-scale and “predictand” local climate variables, calibrated and 

validated on observed data and then applied to GCMs variables. They require limited computational burden 

and also allow analysis at station scale but need long series of observed data for the definition of the 

statistical relationships. The latter ones involve the use of climate models at limited area and highest 

resolution (RCM Regional Climate Model) nested for the area of interest on the global model from which 

they draw the boundary conditions. Currently adopted resolutions, in the order of 10 km, on the one hand, 

allow a better resolution of the orography and, on the other one, solve a substantial fraction of the local 

atmospheric phenomena. Moreover, different experiments have proven their good capability in reproducing 

regional climate variability and changes.  

Even if this refinement makes it possible to accurately evaluate a remarkable fraction of weather patterns, 

dynamical approaches may misrepresent orography, land surface feedbacks and sub-grid processes, thus 

inducing biases preventing their direct use for impact analysis (Maraun, 2016). To overcome this issue, 

different approaches, known as Bias Correction (BC) methods, have been proposed in recent years (Maraun 

& Widmann, 2017). They can be defined as statistical regression models calibrated for current periods in 

order to detect and correct biases, which are assumed to systematically affect the climate simulations. 

Although the advantages, limitations and warnings regarding their adoption are widely debated in recent 

literature (Maraun & Widmann, 2017), they are currently recognized as a necessary stage in producing 

weather variables to use as inputs for impact-predictive tools. Otherwise, under the assumption that climate 

modeling chains could be affected by similar errors in current and future time spans, considering the 

anomalies between time spans is expected limiting the influence of errors potentially affecting the modeling 

chains. 

Moreover, as well-known different sources of uncertainties deeply affect the robustness and reliability of 

climate projections (e.g. due to natural variability, model limitations, future development of non-climatic 
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forcing; Hawkins & Sutton, 2009); in last years, several consortiums have promoted “ensemble” initiatives 

to evaluate uncertainties associated to different realizations of climate experiments and favor the 

comparison among the simulations. Among these ones, in more recent years, the WCRP Coordinated Regional 

Downscaling Experiment (CORDEX) project (Giorgi et al. 2009) has been established; it provides a global 

coordination for Regional Climate Downscaling experiments over fixed domains and agreed horizontal 

resolution. The included climate projections form a multi-model ensemble where different GCMs and RCMs 

(or statistical approaches) concur to provide assessments for the area of interest. 

As reported above, the indicators are computed exploiting 19 climate simulation chains included in EURO-

CORDEX multi-model ensemble where dynamical downscaling by using RCMs is carried out at a horizontal 

resolution of about 12 km (0.11°). The list of considered modeling chains is reported in Table 1. 

Table 1:Adopted EURO-CORDEX simulations at a 0.11º resolution (~12km) over Europe 

(EURO-CORDEX ensemble); they are identified reporting providing institution, driving 

model and adopted RCMs 

Code Institution Driving model RCM 

1 CLMcom CNRM-CM5_r1i1p1 CCLM4-8-17_v1 

2 CNRM CNRM-CM5_r1i1p1 Aladin53 

3 RMIB-Ugent CNRM-CM5_r1i1p1 Alaro 

4 SMHI CNRM-CM5_r1i1p1 RCA4_v1 

5 KNMI EC-EARTH RACMO22E_v1 

6 DMI EC-EARTH HIRHAM5_v1 

7 CLMcom EC-EARTH CCLM4-8-17_v1 

8 KNMI EC-EARTH RACMO22E_v1 

9 SMHI EC-EARTH RCA4_v1 

10 IPSL-INERIS IPSL-CM5A-MR_r1i1p1 WRF331F_v1 

11 SMHI IPSL-CM5A-MR_r1i1p1 RCA4_v1 

12 CLMcom HadGEM2-ES CCLM4-8-17_v1 

13 KNMI HadGEM2-ES RACMO22E_v1 

14 SMHI HadGEM2-ES RCA4_v1 

15 CLMcom MPI-ESM-LR_r1i1p1 CCLM4-8-17_v1 

16 MPI-CSC MPI-ESM-LR_r1i1p1 REMO2009 

17 SMHI MPI-ESM-LR_r1i1p1 RCA4_v1 

18 MPI-CSC MPI-ESM-LR_r1i1p1 REMO2009 

19 DMI NorESM1-M HIRHAM5 

The modeling chains are forced by two RCPs: RCP4.5 and RCP8.5. Furthermore, the climate indicators are 

given as anomalies between the future 30 years periods (2021-2050 and 2071-2100) and the reference time 

span 1971-2000. 
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3. Definition of the indicators 

Table 2: Lists of the computed indicators  

 Acronym Description Required 

variables 

Anomaly expressed 

as 

1 RR_DJF Cumulative precipitation during 

the Winter season (December-

January-February)averaged over 30 

years 

P Relative anomaly (%): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠

𝑋𝑝𝑟𝑒𝑠
% 

2 RR_MAM Cumulative precipitation during 

the Spring season (March-April-

May)averaged over 30 years 

P Relative anomaly (%): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠

𝑋𝑝𝑟𝑒𝑠
% 

3 RR_JJA Cumulative precipitation during 

the Summer season (June-July-

August)averaged over 30 years 

P Relative anomaly (%): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠

𝑋𝑝𝑟𝑒𝑠
% 

4 RR_SON Cumulative precipitation during 

the Autumn season (September-

October-November) averaged over 

30 years 

P Relative anomaly (%): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠

𝑋𝑝𝑟𝑒𝑠
% 

5 PRCPTOT Annual total precipitation in wet 

days 

P Absolute anomaly 

(mm): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

6 Rx_1D Yearly maximum 1-day 

precipitation averaged over 30 

years 

P Relative anomaly (%): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠

𝑋𝑝𝑟𝑒𝑠
 

7 R20mm Annual count of days when daily 

precipitation ≥ 20mm averaged 

over 30 years 

P Absolute anomaly 

(days): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

8 R30mm Annual count of days when daily 

precipitation ≥ 20mm averaged 

over 30 years 

P Absolute anomaly 

(days): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

9 Rx5day Yearly maximum value of 

cumulative precipitation over 5 

days averaged over 30 years 

P  Absolute anomaly 

(mm): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

10 R95pTOT  Precipitation fraction in very wet 

days (%).Precipitation fraction due 

to precipitation greater than 95th 

percentile over the annual 

cumulative value averaged over the 

thirty years. 

P  Absolute anomaly 

(%): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 



 

 

 

D.T1.2.1 Concept for tools integration        6 

 

11 PR95prctile 95th percentile of daily 

precipitation (mm) computed over 

thirty years 

P Absolute anomaly 

(mm) : 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

12 PrRP_5 Daily precipitation expected for a 

return period of 5 years computed 

by using Generalized Extreme 

Value approach 

P Absolute anomaly 

(mm) : 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

13 PrRP_10 Daily precipitation expected for a 

return period of 10 years computed 

by using Generalized Extreme 

Value approach 

P Absolute anomaly 

(mm) : 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

14 PrRP_50 Daily precipitation expected for a 

return period of 50 years computed 

by using Generalized Extreme 

Value approach 

P Absolute anomaly 

(mm) : 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

15 PrRP_100 Daily precipitation expected for a 

return period of 100 years 

computed by using Generalized 

Extreme Value approach 

P Absolute anomaly 

(mm) : 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

16 CWD Consecutive Wet Days- Maximum 

yearly length of wet spell 

(maximum number of consecutive 

days with RR ≥ 1mm) averaged over 

30 years 

P Absolute anomaly 

(days): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

17 CDD Consecutive Dry Days- Maximum 

yearly length of dry spell 

(maximum number of consecutive 

days with RR < 1mm) averaged over 

30 years 

P Absolute anomaly 

(days): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

18 SPI3_SD Standardized Precipitation Index-

(cumulative value of precipitation 

over three months). Over the 

reference period, for each month,  

the 30 cumulated values are fitted 

to a gamma probability distribution 

which is then transformed into a 

normal distribution. SPI3value 

represents units of standard 

deviation from the long-term 

reference mean. The indicator 

represents the percentage of 

months in “severe dry” conditions 

(-1.5>x>-2) over the total number 

of months over the 30 years  

P Absolute anomaly 

(%): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

19 SPI3_ED Standardized Precipitation Index-

(cumulative value of precipitation 

over three months). Over the 

P Absolute anomaly 

(%): 
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reference period, for each month,  

the 30 cumulated values are fitted 

to a gamma probability distribution 

which is then transformed into a 

normal distribution. SPI3value 

represents units of standard 

deviation from the long-term 

reference mean. The indicator 

represents the percentage of 

months in “extremely dry” 

conditions (x<-2) over the total 

number of months over the 30 years  

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

20 TG_DJF Mean temperature during the 

Winter season (December-January-

February)averaged over 30 years 

Tmean Absolute anomaly 

(°C): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

21 TG_MAM Average temperature during the 

Spring season (March-April-

May)averaged over 30 years 

Tmean Absolute anomaly 

(°C): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

22 TG_JJA Average temperature during the 

Summer season (June-July-

August)averaged over 30 years 

Tmean Absolute anomaly 

(°C): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

23 TG_SON Average temperature during the 

Autumn season (September-

October-November)averaged over 

30 years 

Tmean Absolute anomaly 

(°C): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

24 FD Annual count of days when daily 

minimum temperature 

<0°Caveraged over 30 years 

Tmin Absolute anomaly 

(days): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

25 SD Annual count of days when daily 

maximum temperature > 25°C 

averaged over 30 years 

Tmax Absolute anomaly 

(days): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

26 TR Tropical Nights- Annual count of 

days when daily minimum 

temperature > 20°C averaged over 

30 years 

Tmin Absolute anomaly 

(days): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

27 HD Hot days- Annual count of days 

when daily maximum temperature 

>30°C averaged over 30 years 

Tmax Absolute anomaly 

(days): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

28 CFD Consecutive Frost Days-Maximum 

yearly length of days when daily 

minimum temperature < 0°C 

averaged over 30 years 

Tmin Absolute anomaly 

(days): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

29 CHD Annual count of days with at least 

3 consecutive days withmaximum 

Tmax Absolute anomaly 

(days): 
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temperature>30°C averaged over 

30 years 
𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

30  HDDs Heating Degree Days (DD): yearly 

sum of difference between the 

reference temperature of 18°C and 

daily mean temperature when it 

falls below 15°C 

Tmean Absolute anomaly 

(degree days): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

31 GSL Growing Season Length-1st Jan to 

31st Dec in Northern Hemisphere. 

Annual count between first span of 

at least 6 days with daily mean 

temperature >5°C and first span 

after July 1st  of 6 days with mean 

temperature <5°C 

Tmean Absolute anomaly 

(days): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

32 HCB Hydroclimatic Budget- Annual 

difference between Cumulative 

Precipitation and Potential 

Evapotranspiration computed by 

using the formula suggested by 

Hargreaves et al. (1985) 

P, Tmean,Tmax,Tmin Absolute anomaly 

(mm): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

33 SFX1DAY Maximum value of daily snowfall 

flux averaged over 30 years 

Sf Relative anomaly: 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠

𝑋𝑝𝑟𝑒𝑠
% 

34 EWS 98th percentile of daily maximum 

wind speed (m/s) computed over 

thirty years 

ws_max Relative anomaly: 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠

𝑋𝑝𝑟𝑒𝑠
% 

35 SCD Snow Cover Duration (days):  

number of days  with surface snow 

amount >= 30 cm (yearly computed 

over the period from 1st November 

to 31th March of the following year) 

sc Absolute anomaly 

(days) : 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

36 BIO1 Annual mean temperature Tmean Absolute anomaly 

(°C): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

37 BIO2 Mean diurnal range. It is calculated 

by averaging, within the thirty 

years, the daily differences 

between the maximumand 

minimum temperature 

Tmax,Tmin Absolute anomaly 

(°C): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

38 BIO3 Isothermality- It is the ratio, 

expressed in %, of BIO2/BIO7 (see 

belowfor BIO7). 

Tmax,Tmin Absolute anomaly 

(%): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

39 BIO4 Temperature seasonality- the 

average of daily mean temperature 

is calculated for each calendar 

Tmean Absolute anomaly  

%𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 
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month in the selected period, and 

then the Standard Deviation is 

computed among the 12 monthly 

values obtained and expressed in 

percentage. 

40 BIO5 Maximum temperature of warmest 

month computed for each year and 

averaged over the thirty years 

Tmax Absolute anomaly 

(°C): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

41 BIO6 Minimum temperature of coldest 

monthcomputed for each year and 

averaged over the thirty years 

Tmin Absolute anomaly 

(°C): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

42 BIO7 Temperature annual range. It is the 

difference between Bio5 and Bio6 

Tmin, Tmax Absolute anomaly 

(°C): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

43 BIO8 Mean temperature of the wettest 

quarter. After computing the 

wettest quarter of each year in the 

30 years, the mean temperature 

among all wettest quarters is 

calculated 

P, Tmean Absolute anomaly 

(°C): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

44 BIO9 Mean temperature of the driest 

quarter. After computing the driest 

quarter of each year in the 30 

years, the mean temperature 

among all the driest quarters is 

calculated 

P, Tmean Absolute anomaly 

(°C): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

45 BIO10 Mean temperature of warmest 

quarter. After computing the 

warmest quarter of each year in 

the 30 years, the mean 

temperature among all the 

warmest quarters is calculated 

Tmean Absolute anomaly 

(°C): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

46 BIO11 Mean temperature of coldest 

quarter. After computing the 

coldest quarter of each year in the 

30 years, the mean temperature 

among all the coldest quarters is 

calculated 

Tmean Absolute anomaly 

(°C): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

47 BIO12 Annual precipitation P Absolute anomaly 

(mm): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

48 BIO13 Precipitation of wettest month. 

After computing the wettestmonth 

of each year in the 30 years, the 

average cumulative precipitation 

P Absolute anomaly 

(mm/month): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 
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among all the wettest months is 

calculated 

49 BIO14 Precipitation of driest month. After 

computing the driest month of each 

year in the 30 years, the average 

cumulative precipitation among all 

the driest months is calculated 

P Absolute anomaly 

(mm/month): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

50 BIO15 Precipitationseasonality-It is the 

ratio between the standard 

deviation and the mean of 12 

values representing the monthly 

average precipitation over the 

considered period. To avoiddivision 

by 0, the denominator is increased 

by 1 

P Absolute anomaly 

(%): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

51 BIO16 Precipitation of wettest quarter. 

After computing the wettest 

quarter of each year in the 30 

years, the mean cumulative 

precipitation value among all 

wettest quarters is calculated 

P Absolute anomaly 

(mm/3months): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

52 BIO17 Precipitation of driest quarter. 

After computing the driest quarter 

of each year in the 30 years, the 

mean cumulative precipitation 

value among all driest quarters is 

calculated 

P Absolute anomaly 

(mm/3months): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

53 BIO18 Precipitation of warmest quarter. 

After computing the warmest 

quarter of each year in the 30 

years, the mean cumulative 

precipitation value among all 

warmest quarters is calculated 

P Absolute anomaly 

(mm/3months): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

54 BIO19 Precipitation of coldest quarter. 

After computing the coldest 

quarter of each year in the 30 

years, the mean cumulative 

precipitation value among all 

coldest quarters is calculated 

P Absolute anomaly 

(mm/3months): 

𝑋𝑓𝑢𝑡 − 𝑋𝑝𝑟𝑒𝑠 

 

4. Brief insights 

For each climate indicator, RCP and period (2021-2050 vs 1971-2000 or 2071-2100 vs 1971-2000), the values 

can be visualized in terms of median value of the anomalies aggregated at NUTS level (level 3 for all the 

Countries except Germany for which level 2 is used). For more Expert Users, beyond median values, data 

corresponding to the first and third quartiles are also provided at NUTS level and grid point level (exploiting 

the gridpoints as provided by EURO-CORDEX simulations). 
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When these data are used, it worths to consider several aspects: 

• CMIP5 and, in cascade, Euro-CORDEX represent multi-model “ensemble of opportunity” (Tebaldi and 

Knutti, 2007) where the participant research centers are on a voluntary basis. So, the ensemble 

cannot have the ambition to explore, in a systematic way, all the sources of uncertainties associated 

to the modelling systems. In this regard, it is well known how participant global modelling often 

share assumptions, parametrizations making not suitable the assumption of independence among 

the models. For these reasons, the spread among the findings could be viewed as a “lower bound” 

for the characterization of uncertainties associated to the assessments. On the other side, several 

investigations carried out for Global Climate Models proved how the assumption of exchangeable or 

statistically indistinguishable ensemble (Annan & Hargreavas, 2010) according to which the “true” 

climate status is drawn from the same distribution as the ensemble members could work for 

characterizing the distribution of climate models better than the hypothesis of distribution centered 

around the truth (‘truth plus error’; Tebaldi et al., 2005). The assumption of indistinguishable 

ensemble could result particularly adequate for the analysis of future projections (Sanderson & 

Knutti, 2012) or patterns at more detailed spatial and temporal scale. In this respect, the adoption 

of central value or relevant percentiles should be carefully used and accounting for the potential 

limitations.  

• Climate indicators are expected acting as proxies for associated impacts. They can have only a 

limited information content compared to more complex (time and resource consuming) approaches 

as, for example, physically based modelling but they represent a consolidated and expeditious way 

to return information about the frequency and severity of weather-induced hazards. Indicators for 

extreme events are usually able to return information for «moderately rare» events while for rarer 

events, more complex statistical approaches are required (e.g. Extreme Value Analysis).The 

selection for the indicator has to represent a «trade-off» for maximizing the information content; 

e.g. the reference time span for cumulated precipitation in flooding events (concentration time) is 

dependent on the geomorphological features of the basin (size, sealed surfaces, orography); then, 

the related indicator can be proper for detecting some events but it fails for others. 

• The values for the indicators are provided in terms of anomalies between future and current time 

spans in an attempt to minimize the influence of the potential biases affecting climate modelling 

and under the assumption that the performances of the models can be comparable over the entire 

period of analysis. 
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