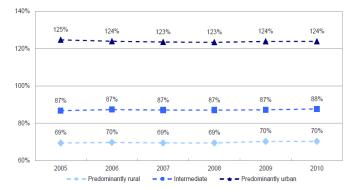


RIGRID - from Vision to Realization

<u>Dr. Bartlomiej Arendarski</u>, Dr. Pio Lombardi, Prof. Przemyslaw Komarnicki Fraunhofer IFF

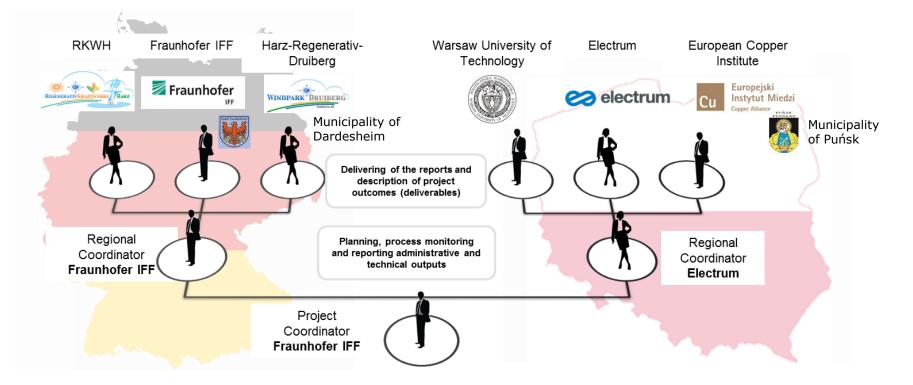
ERA-NET SMART GRIDS PLUS | FROM LOCAL TRIALS TOWARDS A EUROPEAN KNOWLEDGE COMMUNITY

This project has received funding in the framework of the joint programming initiative ERA-Net Smart Grids Plus, with support from the European Union's Horizon 2020 research and innovation programme.


Rural Intelligent Grid – Motivation

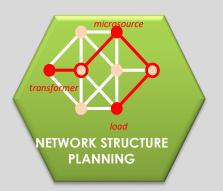
- <u>The dominant role of Renewable Energy Sources (RES)</u>
 - Aim of European Union: up to 80 % of the total electric demand by RES by 2050
- Opposition from the local population regarding installing new power plants
 - Non-engagement in the planning and decision-making processes
- Most of the European areas are rural
 - The development of smart grid rural areas represents a good test field to realize and test new energy projects

Predominantly urban regions (rural population: <20 % of the total population) Intermediate regions (rural population: 20–50 % of the total population) Predominantly rural regions(rural population: >50 % of the total population) Data not available


ERA-NET SMART GRIDS PLUS | FROM LOCAL TRIALS TOWARDS A EUROPEAN KNOWLEDGE COMMUNITY

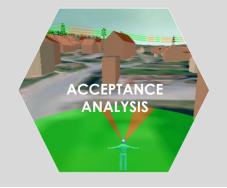
GDP per capita in different types of region in relation to the EU average, 2005-2010

Project Consortium


Three Layers of ERA-Net Smart Grid Plus

Technical layer

Local generation from RES


- to improve reliability and security of supply
- to reduce CO₂ emission

Social layer

Active participation of inhabitants

- acceptance of new investments
- new jobs, contract for local companies
- attract new residents

Economic layer

Involvement of the inhabitants into the clean energy idea

- income from the energy sale
- new career opportunities
- increased visibility of the region
- "energy" tourism development

Rural Intelligent Grid – aims and innovation

Areas of implementation

Aims Methodology Technical - E Economic For the selected technology Weath Renewable energies Social Economic

- Design tool for the planning ٠ and operation of smart grids in rural infrastructures
- Multiple-criteria approach that considers technical, economic and social aspects
- Technical: realization of smart rural area based on the use of RES

Financial

Regulatory

- **Social**: acceptance analysis for installation new infrastructures
- Economic: developing ٠ new models business and attractiveness analysis
- Software tool based on VRS Platform[®] Microsoft and on Office[®]
- 3D visualization of scenarios

Results

Load and power

generation estimation

Technical and economic

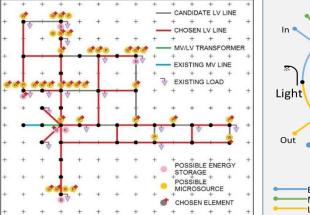
sizing and siting

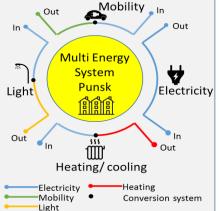
RES plants and

storage systems

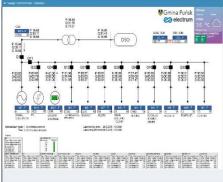
Rural Smart Grid Punsk Demonstrator

Business model analysis ٠

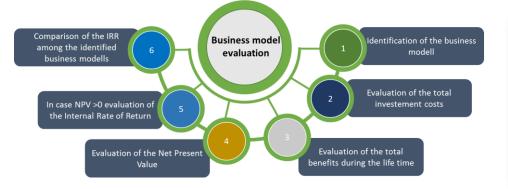


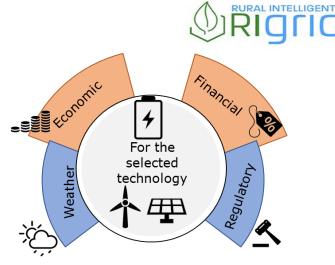


ERA-NET SMART GRIDS PLUS | FROM LOCAL TRIALS TOWARDS A FUROPEAN KNOWLEDGE COMMUNITY


Technical layer - selected results

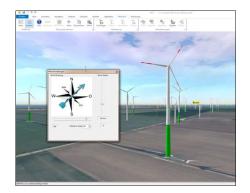
- Concepts, models and algorithms for optimal planning and operation of microgrids in rural areas
 - Software for planning optimal structures of LV microgrid
 - Softwar for optimal microgrid operation
 - Multi-energy model of Punsk
- Demontrator in Punsk
 - wastewater treatment plant (30 kW), PV (40 kWp), diesel generator (25 kW), battery storage (18 kW/ 25 kWh), controllable load, metering, control, protection and communication
- EMACS for monitoting and controling microgrid
- Laboratory stand for protection system testing

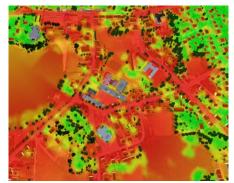




Economic layer - selected results

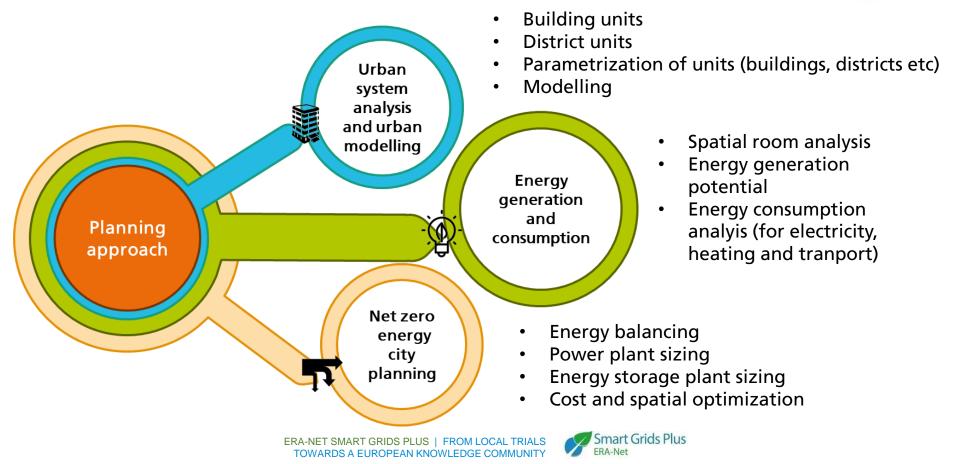
- Investment and operation cost calculation tool for electrical infrastructure planning and operation
 - Economic sizing of power plants and energy storage systems
 - Under condition: economic, finacial, regulatory, weather
 - Total Investment
 - Electricity Generation Costs
 - Business Model
 - · Environmental impact/ Avoided CO2 emissions
 - Potential job creation

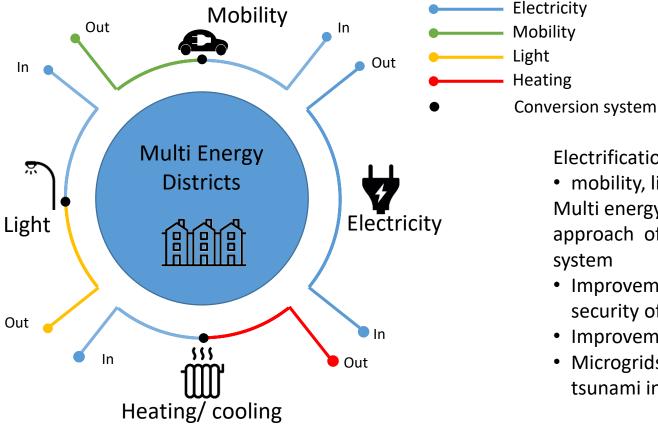



Cost calculation	on	Technology selection	
Input		5 different technology options	
Technology	Wind+Solar		
Investment costs wind [€/kW]	2.000	Costs/ Results	
Investment costs solar [€/kW]	1.200	User inputs Costs/ Results	
System size wind [kWp]	30	LUEC total [€/kWh]	0,
System size solar [kWp]	10	LUEC wind [C/kWh]	0,
Plant lifetime wind [years]	20	Inputs coming from LUEC solar (\$/kWh)	0,
Plant lifetime solar [years]	20	the energetic analysis Energy output total [kWh/year]	55. 45.
Full load hours wind [h/year]	1.500	Energy output solar [kWh/year]	10
Full load hours solar [h/year]	1.000		
Discount rate [%]	8%	Empty the results	
M&O share wind [%]	1,5%	Empty the results	
M&O share solar [%]	1,0%		_
Fuel costs [€/kWh]	0,05		
Electrical efficiency [%]	35,0%		
	85.0%		

Social layer - selected results

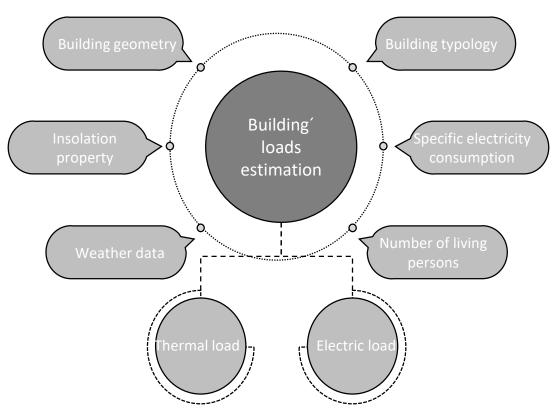
- Virtual Reality tool for spatial planning and acceptance analysis of electrical infrastructure
 - Simulation and communication of planning with decision makers, planners and residents
 - Creation of acceptance among the population
 - Presentation of actual situations and planning alternatives
 - Customized object catalog
 - Interactive functionalities for planning and presentation





RIGRID Tool: Planning Net Zero Energy Cities

RIGRID Tool: Planning Net Zero Energy Cities-Holistic approach

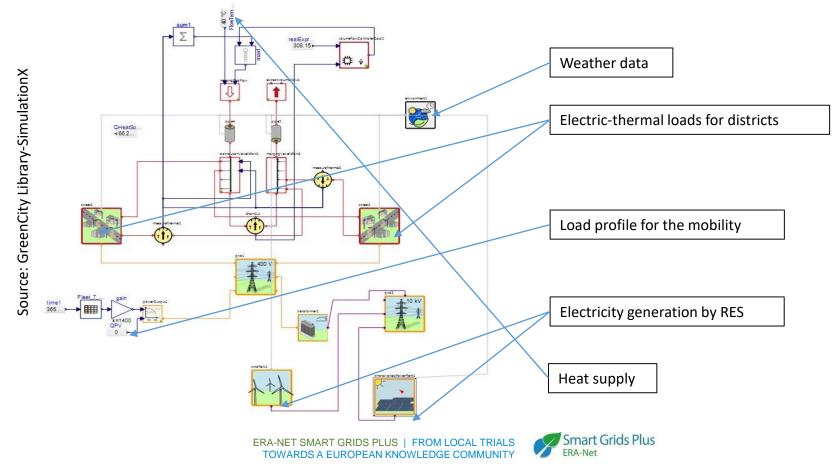


Electrification of all energy uses:

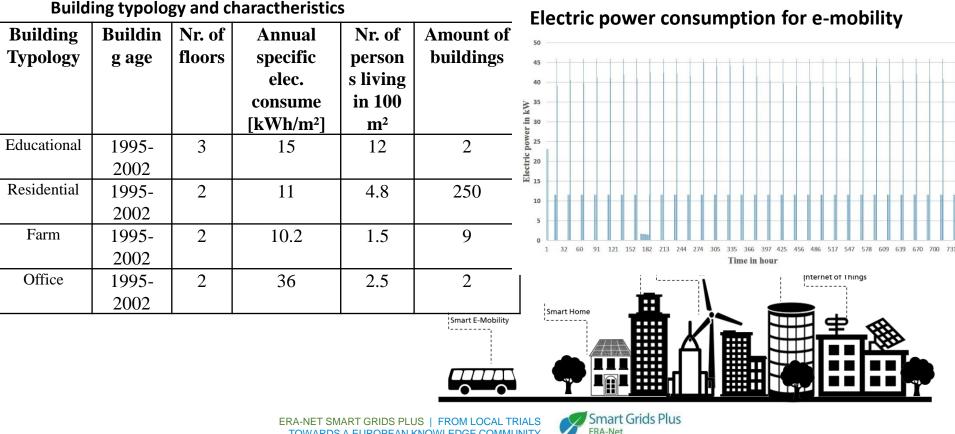
- mobility, light and heating-cooling Multi energy systems: holistic approach of the whole energy system
- Improvement of relisience and security of the urban energy system
- Improvement of reliability
- Microgrids as solutions (i.e. 2011 tsunami in Japan)

RIGRID Tool: Planning Net Zero Energy Cities- Modelling tools for energy use in buildings

RURAL INTELLIGENT

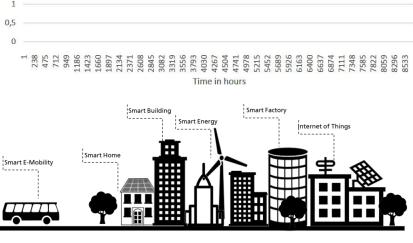

Insolation property and building geometry: Thermal load Building typology and number of living persons : Electric load

Smart Grids Plus ERA-Net


RIGRID Tool: Planning Net Zero Energy Cities- Evaluation of consumption and generation potential

Study case: Punks 2050- Net Zero Energy System **Buildings and E-mobility assumptions**

Study case: Punks 2050- Net Zero Energy System-Heat Pump performance evaluation



Air-to-Water Heat Pump

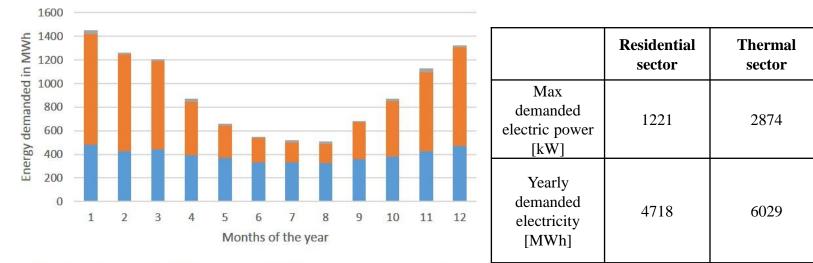
Heat source temperature (K)	Sink side temperature (K)				Average value		
	288.15	308.15	318.15	328.15	333.15	3	
253.15	3.2	1.9	1.4	1.2	1.1	ලි 2,5	
258.15	3.6	2.3	1.8	1.4	1.2	2	
266.15	4.0	2.9	2.5	2.1	1.9	1,5	
275.15	4.7	3.4	2.9	2.5	2.4	0,5	
280.15	5.6	4.0	3.3	2.8	2.7	0	
283.15	5.5	4.1	3.5	2.9	2.7	1 238 475 7712 7712 1186 1186 1186 11887 11887 11887 11887 11887 11887 11887 11887 11897 11897 11897 11897 11897 11897 11857 118666 11866 11866 11866 11866 11866	
288.15	6.3	4.6	3.7	3.1	2.9	Time in hou	
293.15	6.5	4.8	3.8	3.2	3.0	Smart Building	

Air Temperature 2010

Min (°C)	Max (°C)	Average (°C)
-20.8	29.9	7.26

Smart Grids Plus ERA-Net

Study case: Punks 2050- Net Zero Energy System-Energy consumption

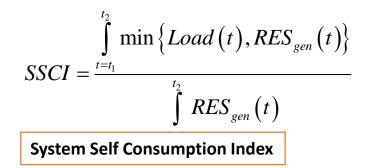


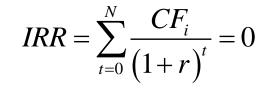
Transportation

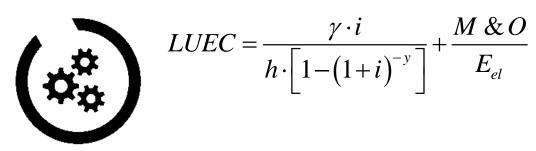
sector

460

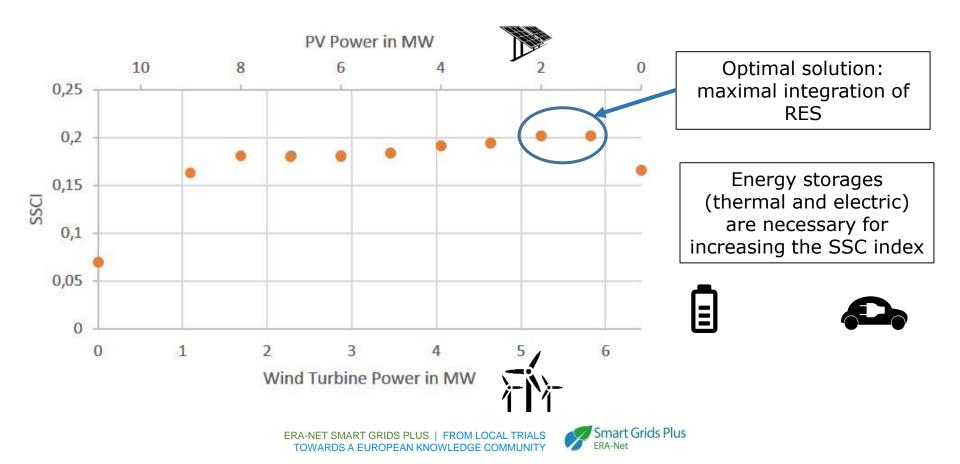
240


■ Residential Sector [MWh] ■ Thermal Sector [MWh] ■ Transportation Sector [MWh]


Study case: Punks 2050- Net Zero Energy System-Energy and economi indexes



$$NPV = \sum_{t=0}^{N} \frac{CF_t}{\left(1+i\right)^t}$$


$$SSSI = \frac{\int_{t=t_{1}}^{t_{2}} \min \left\{ Load(t), RES_{gen}(t) \right\}}{\int_{t=t_{1}}^{t_{2}} Load(t)}$$
System Self Sufficiency Index

t.

Study case: Punks 2050- Net Zero Energy System-Technical evaluation

Study case: Punks 2050- Net Zero Energy System-Economic evaluation-Electricity generation costs

PV (kW)	Wind (kW)	LUEC _{NZES} (€/MWh)	NPV (k€)	IRR (%)
10850	0	128	640	5,34
9000	1100	127	3056	6,7
8000	1621	118	2850	6,7
7000	2282	108	2663	6,78
6000	2873	98	2839	7,06
5000	3464	89	2643	7,1
4000	4055	79	2572	7,25
3000	4646	70	2625	7,55
2000	5237	61	2678	7,93
1000	5828	51	2607	8,28
0	6420	46	2591	8,50

Study case: Punks 2050- Net Zero Energy System-Economic evaluation- Heating costs

Pollutions free solution

Study case: Punks 2050- Net Zero Energy System-Spatial Development evaluation

Thank you for your attention!

Contacts:			
	Fraunhofer Institute for Factory Operation and Automation IFF	8	
Dr. Bartlomiej Arendarski Project Manager Energy Systems and Infrastructures	Sandtorstr. 22 39106 Magdeburg, Germany Phone +49 391 4090 – 145 Fax +49 391 4090 – 370 Bartlomiej.arendarski@iff.fraunhofer.de www.iff.fraunhofer.de		

© ERA-Net Smart Grids Plus

ERA-NET SMART GRIDS PLUS | FROM LOCAL TRIALS TOWARDS A EUROPEAN KNOWLEDGE COMMUNITY

This project has received funding in the framework of the joint programming initiative ERA-Net Smart Grids Plus, with support from the European Union's Horizon 2020 research and innovation programme.

