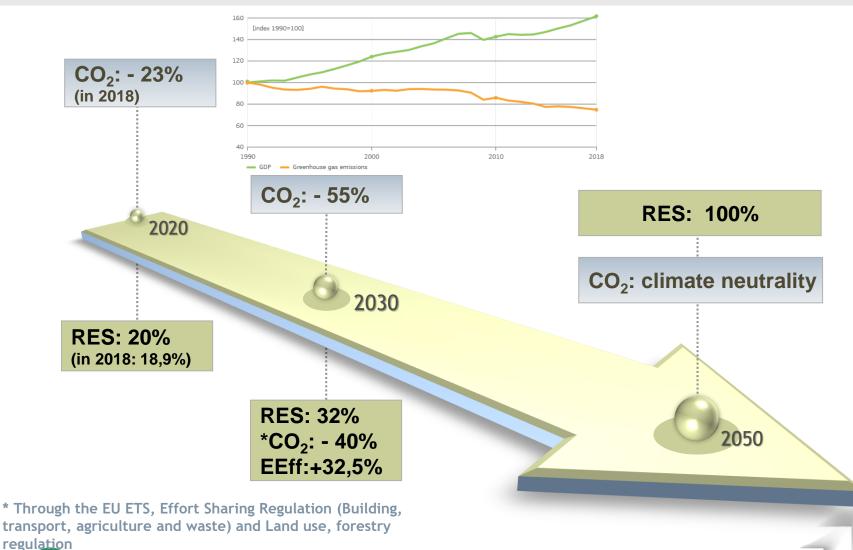


TAKING COOPERATION FORWARD

Multi Criteria planning methodology to decarbonize energy systems

PROSPECT2030 | HSMD | Prof. P. Komarnicki, <u>Dr. P. Lombardi</u>

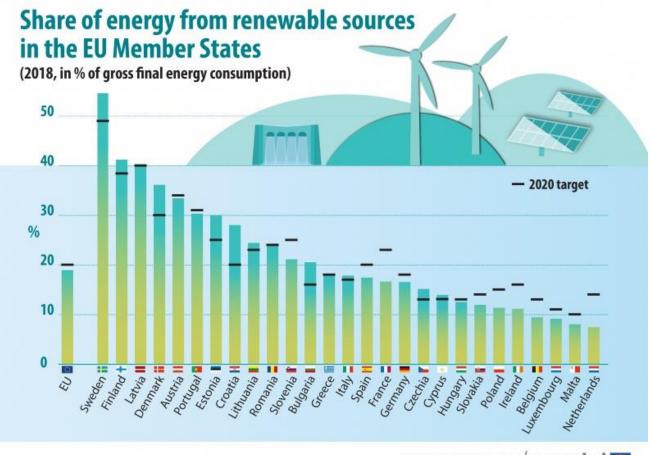
AGENDA


PROSPECT2030

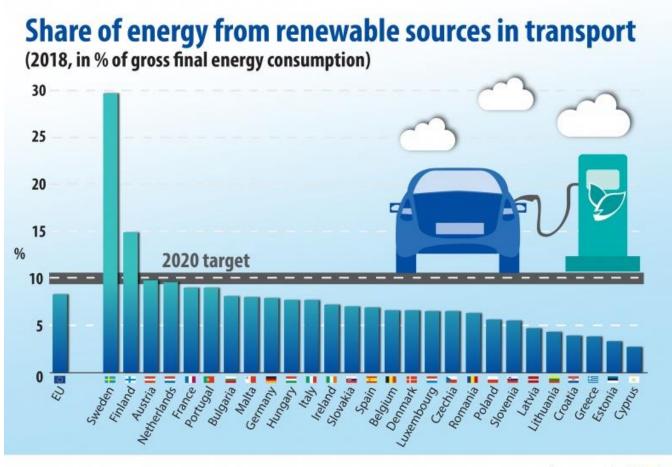
RES

Status quo in EU and in Germany Integrating volatile RES: Problems and solutions Multi criteria planning methodology : Analytic Hierarchy <u>Process</u> Study case: Siberian Isolated Power Systems

EUROPEAN GREEN DEAL STRATEGY

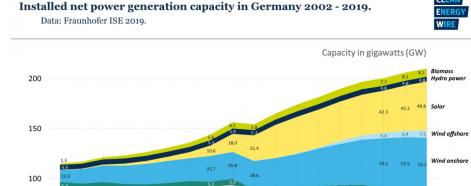


EU28 STATUS QUO FOR SHARE OF RES



ec.europa.eu/eurostat

EU28 STATUS QUO FOR SHARE OF RES



ec.europa.eu/eurostat

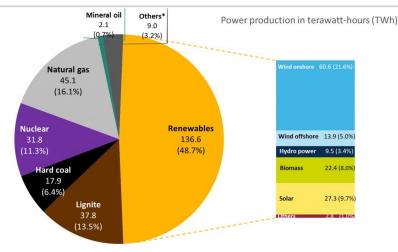
5

GERMANY STATUS QUO FOR SHARE OF RES

23.8

23.1

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016


20.3

50

0

Share of energy sources in gross German power production in first half 2020. Data: BDEW 2020, preliminary.

*Without power generation from pumped storage

Note: Government renewables targets are in relation to total power consumption (272.3 TWh in H1/2020), not production. Renewables share in gross German power consumption H1/2020 (without pumped storage): 50.2%.

C BY SA 4.0

Oil

Natural gas

Hard coa

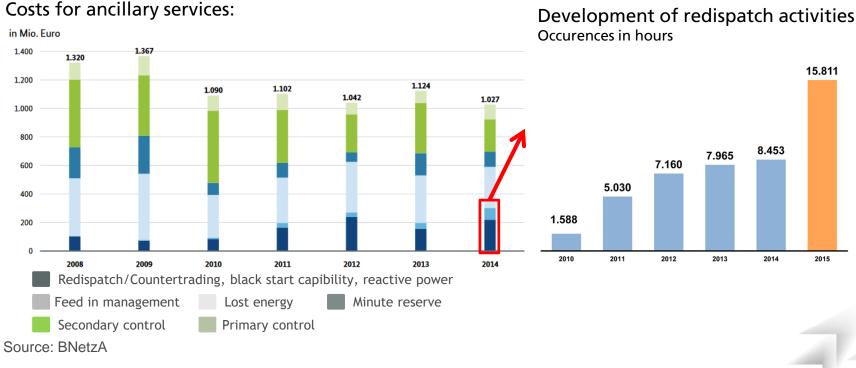
Lignite Nuclear nowe

30.2 29.5

2017 2018 2019

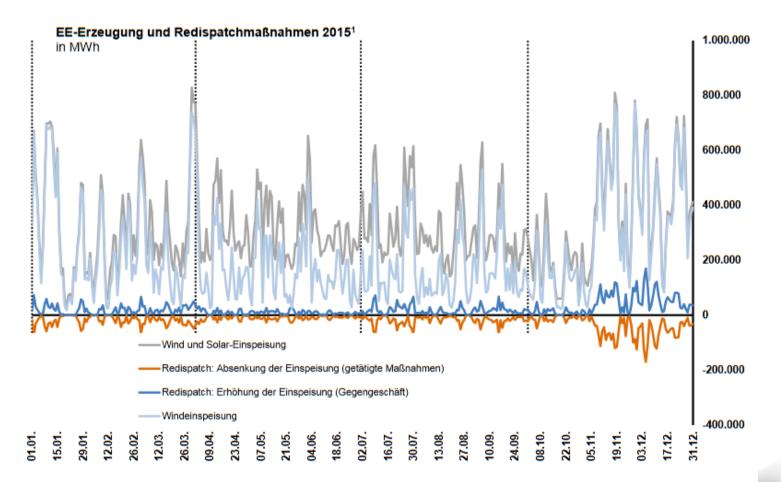
29.8

CLEAN



C BY SA 4.0

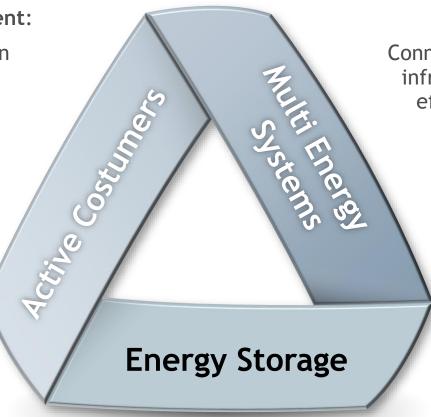
COSTS TO INTEGRATE VOLATILE RES IN **GERMANY**


- High costs of integrating volatile RES into the electricity system:
- Costs for ancillary services in Germany: more than 1 billion €
 - Costs for feed-in management and redispatch in Germany 2015: 880.5 Mio. € (2014: approx. 368 Mio. €)

Development of redispatch activities:

PROBLEMS DUE TO THE VOLATILITY OR RES

Quelle: Monitoringreferat der Bundesnetzagentur


¹In dieser Abbildung wird die Korrelation zwischen der Einspeisung Erneuerbarer Energien und Redispatchmaßnahmen dargestellt. Es gibt weitere Ursachen für Redispatchentwicklungen, die unter 3.1.1 genannt sind.

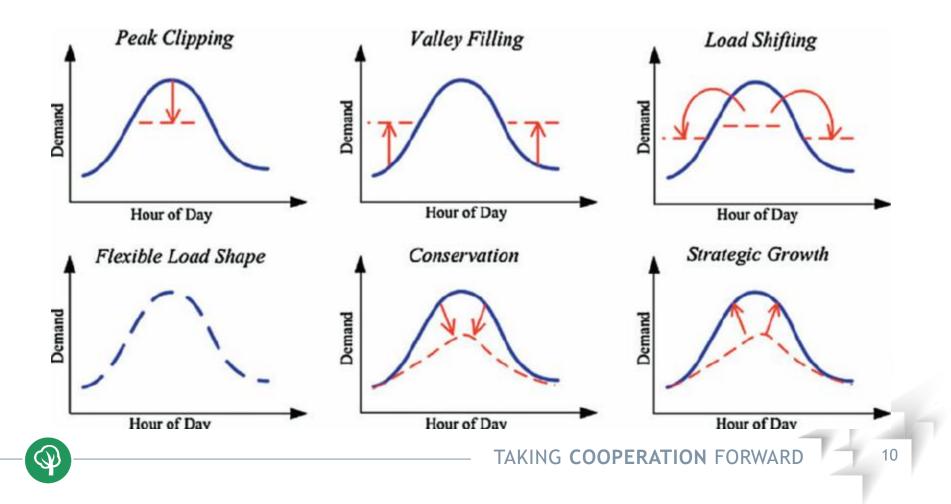
SOLUTION FOR INTEGRATING RES INTO THE ENERGY SYSTEMS: MORE FLEXIBILITY

Demand Side Management:

Align energy consumption with volatile Energy generation

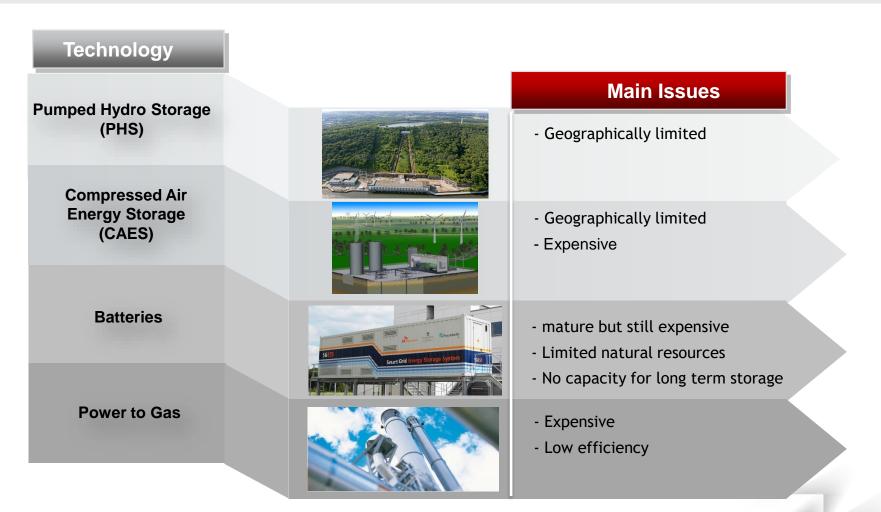
Energy Hubs:

Connect the existing energy infrastructures to increase efficiency, flexibility and synergies


Energy Buffering:

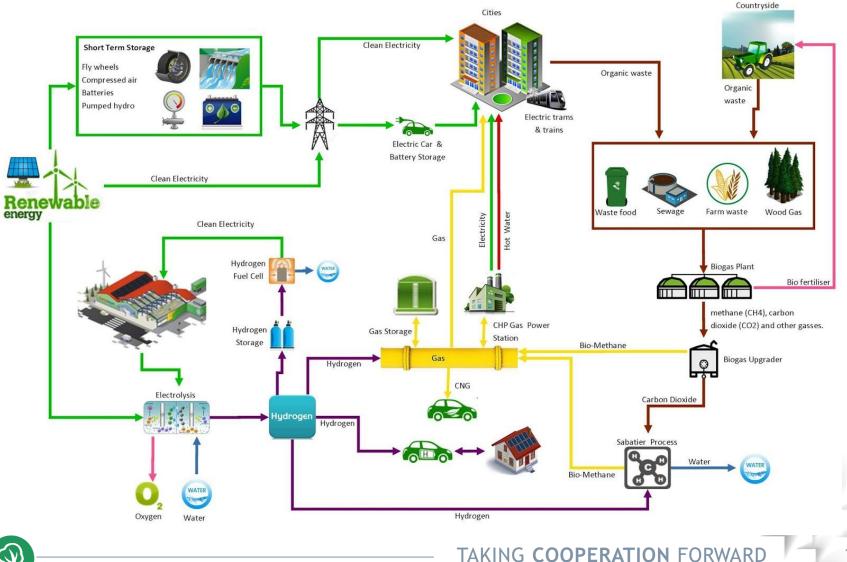
Store surplus energy for times with high demand

SOLUTION I: DEMAND SIDE MANAGMENT



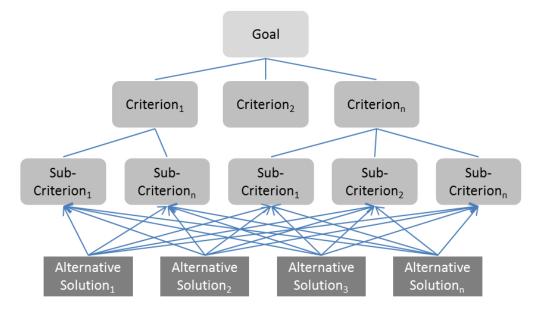
Limited potential of total energy consumption (approx. 10%)

SOLUTION II: ENERGY STORAGE SYSTEMS



Also: Thermal Energy Storage, Flywheels, Capacitors

SOLUTION III: MULTI-ENERGY SYSTEMS


PROSPECT2030

MULTI CRITERIA PLANNING TOOL: ANALYTIC HIERARCHY PROCESS (AHP)

- Multi criteria decision analysis weidely used for planning and upgrading energetic infrastructures
- AHP belongs to the Multi Attribute Decision Making (MADM)
 - Hieararchical structure
 - Aim of the problem is set at the top level, the criteria and the sub criteria are set at the midle levels, the alternative solution are set at the bottom level

MULTI CRITERIA PLANNING TOOL: ANALYTIC HIERARCHY PROCESS (AHP)

- AHP composed of six steps
 - 1. Set of goal of the problem and criteria to be considered
 - 2. Organization of the problem in a hierarchical structure
 - 3. Comparison of all criteria and sub criteria in a pair-wise fashion
 - 4. Set of a *n* x *n* reciprocal judgment matrix A and evaluation of the largest positive real eigenvalue λ_{max} and the corresponding eigenvector w
 - 5. Consistency check
 - 6. Evaluation of all the local priority vector (rank of the alternative solutions)

ANALYTIC HIERARCHY PROCESS: SAATY SCALE PAIR WISE COMPARISON

Intensity	Definition	Explanation
1	Equal importance	Two activities contribute equally to the objective
2	Weak	
3	Moderate importance	Experience and judgment slightly favour one activity over another
4	Moderate plus	
5	Strong importance	Experience and judgment strongly favour one activity over another
6	Strong plus	
7	Very strong or demonstrated importance	An activity is favoured very strongly over another; its dominance demonstrated in practice
8	Very. very strong	
9	Extreme importance	The evidence favoring one activity over another is of the highest possible order of affirmation

ANALYTIC HIERARCHY PROCESS: JUDMENT MATRIX

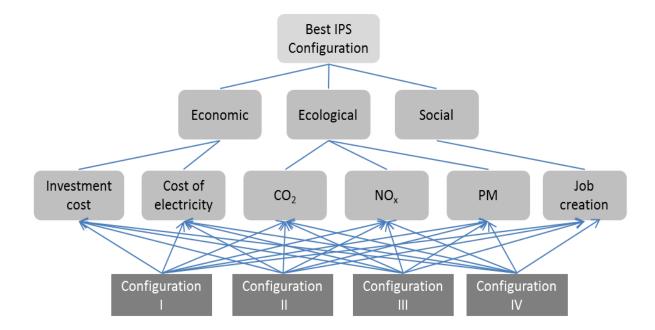
$$\begin{bmatrix} 1 & a_{12} & a_{13} & \dots & a_{1n} \\ 1/a_{12} & 1 & a_{23} & \dots & a_{2n} \\ 1/a_{13} & 1/a_{23} & 1 & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ 1/a_{1n} & 1/a_{2n} & 1/a_{3n} & \dots & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ \dots \\ w_n \end{bmatrix} = \lambda \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ \dots \\ w_n \end{bmatrix}$$

Set of a $n \times n$ reciprocal judgment matrix A and evaluation of the largest positive real eigenvaleu λ_{max} and the corresponding eigenvector w

$$C_i = \frac{(\lambda_{max} - n)}{(n-1)}$$

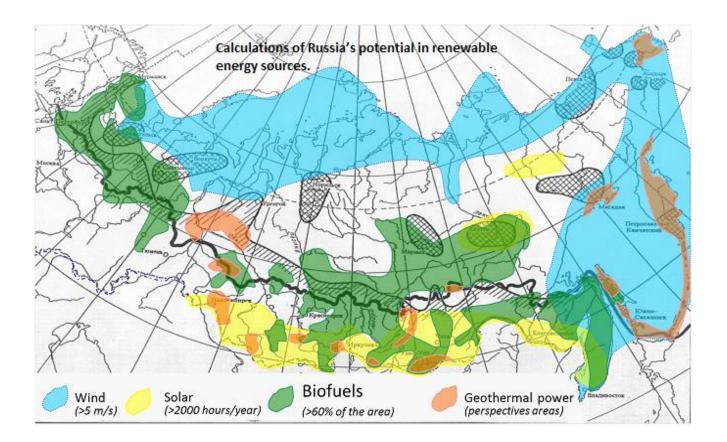
Consistency index

$$C_R = \frac{C_i}{R_i}$$


Consistency Ratio

Matrix size	1	2	3	4	5	6	7	8	9	10
Random index	0	0	0.58	0.9	1.12	1.24	1.32	1.41	1.45	1.49

STUDY CASE: SIBERIAN ISOLATED POWER SYSTEM


	Diesel generator	Photovoltaic plant	Battery	Wind turbine(s)
Configuration I				
Configuration II		\checkmark		
Configuration III				
Configuration IV				

Source: P. Lombardi, T. Sokolnikova, K. Suslov, N. Voropai, Z. Styczynski, "Isolated Power System in Russia. A chance for renewable energies?" Renewable Energy, 90, 532-541, 2016

STUDY CASE: SIBERIAN ISOLATED POWER SYSTEM

Source: P. Lombardi, T. Sokolnikova, K. Suslov, N. Voropai, Z. Styczynski, "Isolated Power System in Russia. A chance for renewable energies?" Renewable Energy, 90, 532-541, 2016

STUDY CASE: SIBERIAN ISOLATED POWER SYSTEM

	Diesel generator	Photovoltaic plant	Wind turbine (Enercon E33)	Energy storage system (Battery)	Inverter
Nominal power [kW] - Storage capacity [kWh]	Up to 3200 [kW]	Up to 3200 [kW]	330 [kW] Up to 10 turbines	1000 [kW] 1000 [kWh]	3200 [kW]
Investment costs [€/kW]	700	2500	1515	1630	400
Maintenance &	0.1	100	2000	9200	
Operation costs	[€/h]	[€/years]	[€/years]	[€/years]	
Lifetime	15000	20	15	15	
	[h]	[years]	[years]	[years]	
Hub high [m]			25		
Round trip				80	
efficiency [%]					
Minimal state of charge [%]				20	

Source: P. Lombardi, T. Sokolnikova, K. Suslov, N. Voropai, Z. Styczynski, "Isolated Power System in Russia. A chance for renewable energies?" Renewable Energy, 90, 532-541, 2016

STUDY CASE: SIBERIAN ISOLATED POWER SYSTEM ECONOMICAL ANALYSIS

Diesel price [€/litre]	Investment cost [k€]						lectricity Wh]	
	Conf.	Conf.	Conf.	Conf.	Conf.	Conf.	Conf.	Conf.
	I	II		IV	I	II		IV
0.1	2100	3380	3380	3380	0.293	0.302	0.302	0.302
0.2	2100	3380	3380	3380	0.337	0.346	0.346	0.346
0.3	2100	3380	3380	3380	0.38	0.389	0.389	0.389
0.4	2100	3380	3380	3380	0.424	0.433	0.433	0.433
0.5	2100	3380	3380	3380	0.468	0.477	0.477	0.477
0.6	2100	3380	3380	3380	0.512	0.521	0.521	0.521
0.7	2100	3380	13013	13013	0.555	0.564	0.56	0.56
0.8	2100	3380	13013	13013	0.599	0.608	0.594	0.594
0.9	2100	3380	13013	18013	0.643	0.652	0.627	0.625
1.0	2100	3380	13013	18013	0.687	0.696	0.661	0.655
1.1	2100	4880	13013	18013	0.73	0.738	0.695	0.684
1.2	2100	4880	13013	18013	0.774	0.781	0.729	0.714
1.3	2100	4880	13013	18013	0.818	0.823	0.762	0.743
1.4	2100	4880	13013	18013	0.862	0.865	0.796	0.773
1.5	2100	4880	13013	18013	0.906	0.907	0.83	0.802
1.6	2100	4880	13013	18013	0.949	0.949	0.864	0.83
1.7	2100	4880	13013	18013	0.993	0.992	0.897	0.859
1.8	2100	4880	13013	18013	1.037	1.034	0.931	0.888
1.9	2100	4880	13013	18013	1.081	1.076	0.965	0.917
2.0	2100	4880	13013	18013	1.124	1.118	0.998	0.946

Source: P. Lombardi, T. Sokolnikova, K. Suslov, N. Voropai, Z. Styczynski, "Isolated Power System in Russia. A chance for renewable energies?" Renewable Energy, 90, 532-541, 2016

STUDY CASE: SIBERIAN ISOLATED POWER SYSTEM ECOLOGICAL AND SOCIAL ANALYSIS

	Configuration I	Configuration II	Configuration III	Configuration IV
CO ₂ [tons/yr]	12914	12460	9959	8697
NO _x [tons/yr]	284	274	219	191
PM [tons/yr]	2.43	2.31	1.85	1.618

Social aspect:

For each MW of installed PV or Wind Turbine operating as isolated power system in rudal area, 30 and 22 new jobs are created (source: IRENA)

Source: P. Lombardi, T. Sokolnikova, K. Suslov, N. Voropai, Z. Styczynski, "Isolated Power System in Russia. A chance for renewable energies?" Renewable Energy, 90, 532-541, 2016

STUDY CASE: SIBERIAN ISOLATED POWER SYSTEM MATRIX OF JUDGMENT

$$\begin{bmatrix} 1 & a_{12} & a_{13} & \dots & a_{1n} \\ 1/a_{12} & 1 & a_{23} & \dots & a_{2n} \\ 1/a_{13} & 1/a_{23} & 1 & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ 1/a_{1n} & 1/a_{2n} & 1/a_{3n} & \dots & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ \dots \\ w_n \end{bmatrix} = \lambda \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ \dots \\ w_n \end{bmatrix}$$

	IC	COE	CO ₂	NO _x	PM	JC
IC	1	1/3	5	9	4	1
COE	3	1	3	9	3	1
CO ₂	1/5	1/3	1	9	3	1/5
NO _x	1/9	1/9	1/9	1	1/3	1/9
PM	1/4	1/3	1/3	3	1	1/9
JC	1	1	5	9	9	1
$\lambda_{\rm max} = 6.597$;CF	R=0.092					

STUDY CASE: SIBERIAN ISOLATED POWER SYSTEM PAIR WISE COMPARISON

PAIR WISE COMPARISON OF THE IPS CONFIGURATION TO THE INVESTMENT COST SUB CRITERION

	Conf.	Conf.	Conf.	Conf.	Priority
	Ι	II	III	IV	Vector
Conf. I		3	5	9	0.583
Conf. II	1/3		5	7	0.29
Conf. III	1/5	1/5		3	0.085
Conf. IV	1/9	1/7	1/3		0.042
$\lambda_{\rm max} = 4.$					

Pair wise comparison of the $\ensuremath{\text{IPS}}$ configuration to $\ensuremath{\text{CO}}_2$ sub criterion

	Conf.	Conf.	Conf.	Conf.	Priority
	Ι	II	III	IV	Vector
Conf. I		1/3	1/5	1/8	0.0503
Conf. II	3		1/3	1/8	0.0984
Conf. III	5	3		1/3	0.2401
Conf. IV	8	8	3		0.6112
$\lambda_{\rm max} = 4.$	125;CR	R=0.046			

PAIR WISE COMPARISON OF THE IPS CONFIGURATION TO PM SUB CRITERION

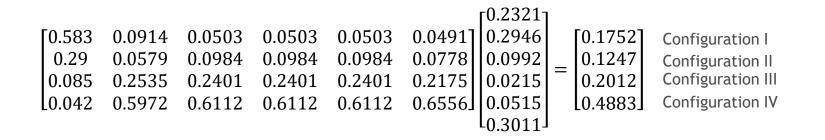
Conf.	Conf.	Conf.	Conf.	Priority				
Ι	II	III	IV	Vector				
	1/3	1/5	1/8	0.0503				
3		1/3	1/8	0.0984				
5	3		1/3	0.2401				
8	8	3		0.6112				
$\lambda_{\text{max}} = 4.125; \text{CR} = 0.046$								
	I 3 5 8	I II 1/3 3 5 3 8 8	I II III 1/3 1/5 3 1/3 5 3 8 8	I II III IV 1/3 1/5 1/8 3 1/3 1/8 5 3 1/3 8 8 3				

PAIR WISE COMPARISON OF THE IPS CONFIGURATION TO THE COST OF ELECTRICITY SUB CRITERION

	Conf.	Conf.	Conf.	Conf.	Priority
	Ι	II	III	IV	Vector
Conf. I		3	1/5	1/8	0.0914
Conf. II	1/3		1/3	1/8	0.0579
Conf. III	5	3		1/3	0.2535
Conf. IV	8	8	3		0.5972
$\lambda_{\rm max} = 4.$	273;CR	L=0.1			

Pair wise comparison of the $\ensuremath{\text{IPS}}$ configuration to $\ensuremath{\text{NO}_2}$ sub criterion

	Conf.	Conf.	Conf.	Conf.	Priority				
	Ι	II	III	IV	Vector				
Conf. I		1/3	1/5	1/8	0.0503				
Conf. II	3		1/3	1/8	0.0984				
Conf. III	5	3		1/3	0.2401				
Conf. IV	8	8	3		0.6112				
$\lambda_{\rm max} = 4.$	$\lambda_{\rm max} = 4.125; CR = 0.046$								


PAIR WISE COMPARISON OF THE IPS CONFIGURATION TO JOB CREATION SUB CRITERION

		Conf.	Conf.	Conf.	Conf.	Priority		
		Ι	II	III	IV	Vector		
	Conf. I		1/3	1/5	1/8	0.0491		
	Conf. II	3		1/3	1/8	0.0778		
	Conf. III	5	3		1/3	0.2175		
	Conf. IV	8	8	3		0.6556		
	$\lambda_{\rm max} = 4.$							
TAKING COOPERATION FORWARD								

Source: P. Lombardi, T. Sokolnikova, K. Suslov, N. Voropai, Z. Styczynski, "Isolated Power System in Russia. A chance for renewable energies?" Renewable Energy, 90, 532-541, 2016

STUDY CASE: SIBERIAN ISOLATED POWER SYSTEM RESULT

	Diesel generator	Photovoltaic plant	Battery	Wind turbine(s)
Configuration I				
Configuration II		\checkmark		
Configuration III		\checkmark		
Configuration IV		\checkmark		

Source: P. Lombardi, T. Sokolnikova, K. Suslov, N. Voropai, Z. Styczynski, "Isolated Power System in Russia. A chance for renewable energies?" Renewable Energy, 90, 532-541, 2016

PROSPECT2030

THANK YOU FOR YOUR ATTENTION

