

TAKING COOPERATION FORWARD

TT3: Emissions, Air Quality, Fuel and Ash Logistic Webinar, 02/12/2020

ENTRAIN | AEE INTEC | Harald Schrammel, Christian Ramerstorfer

CONTENT

Particle removal (dust precipitation)

Flue gas condensation

Nitrogen oxides reduction (De-NOx)

> (Multi-)cyclone

> Electrostaticprecipitator (ESP)

> Baghouse filter

 Selective non catalytic reduction (SNCR)

Selective
 catalytic
 reduction (SCR)

CYCLONE/MULTI-CYCLONE

Cyclone

- Centrifugal separator
- Coarse fly ash precipitation (particles > 5 μm)
- Wide operation window (temperature up to > 1000°C)
- Usually designed as multi-cyclone
- Dust load downstream
 - < 150 mg/Nm³ possible

State of the art for industrial biomass combustion plants

in Focus Technik, Ausgabe 1, 2011,

Schmid energy solutions OPFRATIO

N FORWAR

ELECTROSTATIC PRECIPITATOR (ESP) OVERVIEW

- About 120 °C minimum operation temperature
- Safety measures regarding high voltage operation (in the range of 20 to 100 kV) have to be considered

ELECTROSTATIC PRECIPITATOR EXAMPLES

source: Scheuch Electrostatic Precipitators (product folder)

 ESP at the biomass district heating plant (4 MW) in Maria Gugging (Lower Austria)

TAKING COOPERATION FORWARD

EXAMPLE FLUE GAS CLEANING SYSTEM WITH MULTI CYCLONE AND ESP

BAGHOUSE FILTER

- Fabric filter (adhesion separator)
- Almost 100 % dust removal efficiency (independent of particle size)
- Dust load cleaned gas
 5 mg/Nm³
- About 180 °C minimum operation temperature
- Dust removal from filter bags into de-ashing system by frequent backpulsing with compressed air (impuls cleaning system)
- Beyond state of the art
 (applied for waste wood comb.) TAKING COOPERATION FORWARD

FLUE GAS CONDENSATION (SCRUBBERS)

- Primarily heat recovery (sensible and latent heat - feasibility mainly depends on moisture content of the fuel and return flow temperature from the district heating grid)
- Additional positive effect on dust emissions precipitation of fly ash upstream is recommended (dESP) in order to reduce problems regarding condenser corrosion and condensate composition
- Dust load gas outlet < 50 mg/Nm³ (without ESP upstream)
- Almost 100 % coarse fly ash removal (particle size > 1 µm)
- Stainless steel heat exchanger (condenser)
- Periodic cleaning of the heat exchanger with process water/option for scrubber (quench)

EXAMPLE FLUE GAS CLEANING SYSTEM WITH ESP AND FLUE GAS CONDENSATION

> Plant with 5 MW heat output (incl. condensation)

	Cyclones	ESP (dry)	Baghouse filter	Flue gas condensation
Particle size	> 5 µm	≥ 1 µm	all	≥ 1 µm
Dust content cleaned gas [mg/Nm ³ , 11% O ₂]	120 - 200	5 - 50	1 - 5	25 - 50
Operation temperature min (max) [°C]	(> 1000)	120 - 130 (300)	180 - 220 (280)	(40 - 60)
Pressure loss [mbar]	6 - 15	1.5 - 3	10 - 20	
Options	multi- cyclone	wet ESP	dry sorption (HCl, SOx, Hg, dioxins)	scrubber (quench)

FUEL NITROGEN - NOX IN THE FLUE GAS DENOX TECHNOLOGIES

N-content in the fuel

explanations: NOx calculated as NO $_2$ (d.b., 11 vol-% O $_2$) source: I. Obernberger, THE PRESENT STATE AND FUTURE DEVELOPMENT OF INDUSTRIAL BIOMASS COMBUSTION FOR HEAT AND POWER GENERATION, Figure 24

SELECTIVE NON CATALYTIC REDUCTION (SNCR)

- Injection of Ammonia (NH₃) or Urea (CO(NH₂)₂) into the secondary combustion zone
- Reaction of nitrogen oxides (with injected reducing agent) to N₂ directly in the flue gas; by-products: H₂O (and CO₂)
- Temperature range 850°C to 950°C
- Reduction efficiencies of 60 to 70 %
- NOx downstream < 100 mg/Nm³
- Non-reacted Ammonia is emitted (ammonia slip < 10 mg/Nm³)
- Cost effective solution

source: CODEL International Ltd

TAKING COOPERATION FORWARE

e flue gas)

SELECTIVE CATALYTIC REDUCTION (SCR)

- (similar to NOx reduction technology applied for Diesel engines in cars)
- Reduction of NOx with Ammonia using a catalyst material
- Temperature range 170°C to 450°C
- Reduction efficiencies of 80 to 95 %
- NOx downstream lower than with SNCR
- Ammonia slip in the range of 1 to 5 mg/Nm³
- Issues with catalyst deactivation for biomass combustion (due to potassium and other alkali compounds in the flue gas)

SUMMARY

- Flue gas cleaning is an important plant component
 - Authority, operating permit
 - Public acceptance
- It requires special attention and profound planning
 - Evaluation of local legal emission limits
 - Selection of suitable technology
 - Consider space demand and costs

THANK YOU!

Harald Schrammel, <u>Christian Ramerstorfer</u> AEE INTEC Feldgasse 19, A-8200 Gleisdorf

- www.interreg-central.eu/entrain
- h.schrammel@aee.at, c.ramerstorfer@aee.at
 - +43 3112 5886-232, +43 3112 5886-262

