

TAKING COOPERATION FORWARD

CitiEnGov Final conference Ferrara | 3-4 April 2019

Low carbon public buildings-targets and challenges up to 2050

Damir Buzov

INTRODUCTION - CO₂ EMMISION FORECAST UP TO YEAR 2050

Note: The category "energy transformation" includes emissions from oil refineries, coal and gas liquefaction. Source: OECD Environmental Outlook Baseline; output from IMAGE.

Graph1 Structure of CO₂ emmisions in period from 1980 to 2010 and forecast up to 2050 (Source: OECD)

ENVIRONMENTAL IMPACT

Rural areas + Towns and suburbs + Cities

Graph2 Pollution exposure and level of urbanisation in EU countries

TAKING COOPERATION FORWARD

THE PUBLIC BUILDINGS CHALLENGE -ENERGY EFFICIENCY EU REQUIREMENTS FULLFILMENT UP TO 2050

RENEWABLE ENERGY SOURCES (RES) AND LOW TEMPERAURE HEATING (LTH)

The actual design methods for heating systems are based on the utilisation of the huge temperature drop. Renewable Energy Sources (RES) provide much smaller temperature interval operating at significantly lower temperatures. Wall and floor heating systems fit specific well into a LTH design. Also, air heating, enlarged radiators and convectors can be applied.

Wall/ceiling (in mortar)

Wall (dry construction)

Picture 1,2,3 Elements of Low Temperature Heating (LTH)

The EMERSON SG company statement:

" By replacing the traditional solution of central heating, fossil fuel boilers and air conditioning systems, heat pumps for central heating and air conditioning, 40-50% of energy savings are achieved."

https://climate.emerson.com/en-us/industries/processing

RES IN PUBLIC BUILDINGS

ENERGY CONSUMPTION	HEAVY OIL BOILERS	HEAT PUMPS	BIOMASS	NATURAL GAS BOILERS
Fuel net (kWh/aod.)	5.607.490	5,607,490	5.607.490	5,607,490
Heat losses of the source (kWh/vear)	785.049	0	504.674	448,599
Heat transfer losses (kWh/year)	560.749	Ó	0	0
Ellenergy (kWh/year)	1.604.000	1.393.760	1.604.000	1.604.000
Ellenergy generated (kWh/year)	0	0	-1.728.000	0
Water (m3/year)	117.000	110.000	117.000	117.000
YEARLY ENERGY COST (A)	7.471.200 kn	3.706.132 kn	4.448.615 kn	5.515.159 kn
Fuel net (a)	3.575.000 kn	841.124 kn	1.233.648 kn	2.186.921 kn
Heat losses of the source (b)	500.500 kn	0 kn	61.682 kn	174.954 kn
Heat transfer losses (c)	357.500 kn	0 kn	0 kn	0 kn
Total fuel cost (a+b+c)	4.433.000 kn	841.124 kn	1.295.330 kn	2.361.875 kn
Ellenergy consumed	1.283.200 kn	1.215.008 kn	1.398.284 kn	1.398.284 kn
Ellenergy generated (kWh/year)	0 kn	0 kn	0 kn	0 kn
Water (m3/year)	1.755.000 kn	1.650.000 kn	1.755.000 kn	1.755.000 kn
TOTAL (A):	7.471.200 kn	3.706.132 kn	4.448.615 kn	5.515.159 kn
MANPOWER COST (B)	744.049 kn	0 kn	0 kn	0 kn
TOTAL YEARLY COSTS (A+B)	8.215.249 kn	3.706.132 kn	4.448.615 kn	5.515.159
SAVINGS	0 kn	4.509.118 kn	3.766.634 kn	2.700.090 kn
SAVINGS BALANCE SHEET		HEAT PUMP	BIOMASS	NATURAL GAS
Investment cost		9.000.000 kn	12.600.000 kn	4.500.000 kn
Yearly energy costs		3.706.132 kn	4.448.615 kn	5.515.159 kn
Yearly maintenance cost		100.000 kn	110.000 kn	100.000 kn
Yearly savings		4.509.118 kn	3.766.634 kn	2.700.090 kn
Return on investment (year)		2,9	4,7	3,8

Table 1Potential solutions of central heating/air conditioning system upgrade in public biulding with high
energy demand (1EUR=7,5kn)

CENTRAL HEATING AND CLIMATISATION	CURRENT CONDITION	NEW
Central heating and climatisatin solution	Fosil fuel	Renewable sources of energy, waste heat recovery
Energy consumption (MWh/year)	12,1*	6,8
Heat unitary price (€/kWh)	0,04	<u>0,018</u>
Energy savings (kWh/year)	-	5.300.000
Savings (€/year)	-	<u>220.000</u>
Return on investment		<u>3,3 years</u>

 Table2 Comparison of fosil fuel and heat pumps based RES solution of central heating and air conditioning for a building with high energy demands in Zagreb, Croatia

HEAT PUMPS TECHNOLOGY PRINCIPLE

DIZALICE TOPLINE

Scheme 1 Heat pumps principle with different source/sink of heat opportunities

TAKING COOPERATION FORWARD

HEAT PUMPS SOLUTIONS OF HEATING/AIR CONDITIONING IN PUBLIC BUILDINGS

Sea, lakes and rivers nearby settlements have cheap and available source of heat. That kind of water are commonly used at temperatures above +4°C.

Scheme 2 Heat pumps HVAC system using sea water as source/sink of heat provides energy and cost efficient solution of heating/air conditioning

BIOMASS SOURCES

11

Picture 4 Scope of biomass sources

BIOMASS THERMAL ENERGY SOLUTIONS

Biomass boilers design is more complex and it requires much more space comparing to the fosil fuels ones and heat pumps so it significantly increase Investment costs of biomass central heating solution.

Biomass thermal energy cost is lowest comparing to the fosil fuel and heat pump solutions in areas within 100km from the source.

Picture 5,6,7 Hot water boile driven by biomass, firebox and biomass dosing system

TAKING COOPERATION FORWARD

COGENERATION IN PUBLIC BUILDING HEATING AND AIR CONDITIONING SOLUTIONS

13

Scheme 3 Cogeneration of electrical and heat energy achieve higher efficiency (up to 89%) apart from big power plants el.energy production efficiency (up to 38%)

WIND ENERGY TECHNOLOGIES IN RES OF PUBLIC BUILDING

Picture 8 Micro windturbines integrated within the urban zone environment

Wind energy technologies may be divided in two categories;

- Macro wind turbines used for big amount of energy generation in power plants,
- Micro wind turbines are used for local manufacturing of el.energy. They are suitable for buildings installing called "integrated windturbines". The main windturbine components are: blades, impeller, gearbox and generator.

Micro wind turbines may operate in following conditions:

- off-grid (independent grid),
- on-grid (conected with public grid).

PHOTOVOLTAIC ENERGY MODULES IN RES OF PUBLIC BUILDINGS

Scheme 4 Photovoltaic off-grid system

There are two basics types of photovoltaic energy generation in houses and buildings:
The indipendent photovoltaic systems which can not operate on public grid (off-grid),

The photovoltaic systems which may operate on public grid (on-grid).

RES SOLUTIONS WITH ABSORPTION COOLING/HEATING UNITS

Scheme 5 Zero CO₂ emmision RES solution aplicable in public buildings

Damir Buzov CEMEX Croatia Mech.eng.

- www.energeticari-split.hr/
- mail@energeticari-split.hr
 - +385 21 201 430
 - +385 95 8539716