

CWC



**Development Fund** 

### TAKING COOPERATION FORWARD

### CWC - City Water Circles Closing Conference, 9<sup>th</sup> June 2022 in Split

Challenges and opportunities of circular water solutions

**f** *br*, *Federal Association for Rainwater Harvesting and Water Reuse* 

# **CHALLENGES FOR CITIES**



### > Cities can rarely cover their water demand from own resources

Drying out of surrounding regions, negative impacts on nature & agriculture

### > Climate change impacts

- Increase in droughts & heavy rainfalls, damage to infrastructure & environment, pollution of water bodies
- water shortages and higher water costs
- Population growth and urban development leading to more surface sealing, traffic and energy consumption
  - Urban heat island, floods, heat deaths, decline in biodiversity, ...

# WHAT WE HAVE TO DO?



- > Avoid surface sealing and unseal as much as possible
  - Improve urban micro-climate, more urban greenery, less flooding
- Retain rainwater and reuse, instead of draining it out as quickly as possible
  - No rainwater discharge into the sewer system
  - New water resource

### Reduce water consumption and use water economically

- Smart metering for consumption & leaks control, monitoring and optimization
- Avoid water losses

### Reuse water: wastewater is an infinite resource for new water, energy and nutrients

Separate collection of greywater and blackwater for recycling in buildings



- Water in the city is an <u>interdisciplinary</u> challenge (grey, blue & green infrastructures)
- Individual disciplines should work on a common <u>transparent</u> and <u>sustainable</u> solution
- > Speak out problems instead of rejecting or minimising them
- > Involve stakeholders in planning from the very beginning

## WHAT IS THE MOST SUITABLE TECHNOLGY ?



- > There is no universally applicable solution that is equally suitable everywhere
  - Determination of regional/local needs and priorities
- Rainwater management
  - Unsealing, retention, reuse, evaporation, infiltration instead of discharge
- > Wastewater avoidance and water recycling
  - Draw up water balances for the needs (quality and quantity)
  - Greywater recycling including energy recovery <u>https://www.youtube.com/watch?v=XmOWOSikr\_s</u>

### Select technology with highest efficiency or lowest footprint

Comparison of variants (monetary & non-monetary) over a period
30 - 50 years

# **RAINWATER MANAGEMENT**



### Unsealing, retention & reuse, infiltration, urban rooftop farming



# **GREYWATER RECYCLING**



### Greywater recycling, heat recovery and smart metering for a student residence





# **GREYWATER RECYCLING**



### Greywater recycling, heat recovery and smart metering for a student residence



High quality "service" water



40% drinking water savings 40% less wastewater

30% energy savings for water heating





# LACK OF REGULATIONS & GUIDELINES?



### For water reuse from rainwater and greywater recycling:

- 1) EU Directive for Bathing Water 2006/7/EC (under revision)
- 2) EU Regulation on minimum requirements for water reuse for irrigation, which will apply in all EU member states from 26 June 2023
- 3) Onsite non-potable water systems: DIN EN 16941-2:2021 (greywater) and DIN EN 16941-1:2018 (rainwater)
- 4) Protection against pollution of potable water installations and general requirements of devices to prevent pollution by backflow: DIN EN 1717:2011
- 5) Berlin guidelines for service water use (1995)
- 6) British Standards BS8525-1:2010 & BS 8525-2:2011 for greywater



- Projects need a fertile field, right seed and committed people
- Win-win situations should be worked out for grey, blue and green infrastructures
- > Carry out a comparison of variants with stakeholder participation
- Project implementation with competent actors
- > Monitoring for optimisation and dissemination of results
- > Caretaker for maintenance and operation

# **CWC - ONLINE HANDBOOK**





# **CWC - ONLINE HANDBOOK**











Transnational online handbook on circular urban water management and use



CATALOGUE 2: Engineering & NBS tools





# **CWC - ONLINE HANDBOOK**





# **CWC-ONLINE HANDBOOK**





Q (m<sup>3</sup>/h)

PORTIRNICA



Water consumption data pattern

**CATALOGUE 4:** Water efficicency smart tools

**City Water Circles** Transnational online handbook on circular urban water management and use

Interreg CENTRAL EUROPE

CWC





"It is not enough to know, we must also apply; it is not enough to will, we must also do."



Johann Wolfgang von Goethe (Wilhelm Meister's Journeyman Years)

# Thank you.

Nolde - innovative Wasserkonzepte GmbH

<u>Contact</u>: Erwin Nolde <u>mail@innovative-wasserkonzepte.de</u> <u>www.innovative-wasserkonzepte.de</u>