

Report on selection of pilot cases, activity plan for each case

ABSTRACT

The scope of this report is to describe documentation of the selection criteria and results, for the matching process with the operators of the demonstrators and pilot lines.

Table of Contents

1. Selection Criteria	4
2. Selected Pilot Actions	6

ABBREVIATIONS

(AM) Advanced Manufacturing (TRL) Technology Readiness Level

1. Selection Criteria

Pilot lines will be preferentially focused on enhancing the possibility to get advantages by 3D printing processes. By this view point a distinction feature will be the chance to export on existing processes based upon classic technologies some evident advantages provided by 3D printing.

This target will be achieved as a first step by selecting SME or high tech StartUps already firmly engaged in their reference market and business chain. Aims will be therefore directed to highlight not the AM features themselves but more likely the "advanced manufacturing" gain that it could be reached by introducing 3D printing in the already existing processes.

Moving toward already existing goods and markets Amice will measure the importance of:

- Quality control features
- Normative and regulatory affairs items
- Measurable gains like:
 - Possibility to tailor production to the customer need
 - Optimize the process control parameters in the light of present operative procedures
 - Discovering possible limits and unknown defects
 - Suggesting optimization processes in order to maximize the 3D advantage
 - Evaluate customer trust in the new products

To do so Amice Pilot Lines will be preferentially oriented to Incremental Innovation (the gain for the product) in a framework of a Disruptive Innovation (3D printing science) and TRL level from 6 up to 9 will be strongly suggested to get success in the Pilot Lines selection process.

New materials as well as niche application will be welcome in order to expand the testing campaign of this new technology applied to existing products in order to collect the attended ROI in terms of evident advantages compared to the existing market and functional features of the goods.

Therefore, new parameter set have to be defined out of the classic weight gain, prototyping capabilities, cost reduction in order to shed light to the effective advantages on the production chain.

Finally, inner capabilities to move from a linear production to a circular and sustainable organization of the process will be evaluated as an important asset to testify the positive awareness of moving from the already existing techniques to the new technology features.

Table 1 summaries the parameters adopted to select pilot actions.

Selection Criteria

Innovation in an AM environment (i.e. product, process, technological innovation)

TRL level from 6 up to 9

Adoption of new materials

Innovative capabilities to move from a linear production to a circular and sustainable (i.e. product, process, technological innovation);

Effective advantages on the production chain such as cost and time reduction and quality improvement;

Creation of new market

Creation of new partnership

2. Selected Pilot Actions

According to selection criteria described in the previous section, Table 2 presents the selected pilot actions.

Pilot Line /	Company	Topic / Objective		Time	PP
Demonstrato	(Region)	Company / SME	Pilot line /	Schedu	Responsi
r (Region)		needs	Demonstrator	le	ble
			capabilities		
Superfici (IT)	Ligurian	Provide AM	Superfici can	May/Ju	UniGe
	Start-up	related service	provide	ne	
		for the nautical	additive	2020	
		sector	manufacturing		
			technologies		
			and all related		
			services		
			(reverse		
			and CAD/CAE)		
			for the needs		
			of the nautical		
			industry.		
			Benefits in		
			terms of costs,		
			quality, time-		
			to-market,		
			production of		
			customized		
			products, also		
			@ 1:1 scale. A		
			plastic bridge		
			produced		
			before May		
			2020.		
SAIEM (IT)	Continenta	Reduce time and	SAIEM can	May/Ju	UniGe
· · ·	l	costs related to	provide rapid	ne	
		brake assembly;	prototyping	2020	
		Improve quality;	and additive		
		Reduce defects.	manufacturing		
			technologies in		
			order to print		
			brakes. In this		
			case, the large		
			corporation		

Table 2 Overview of selected Pilot Actions

Pilot Line /	Company	Topic / Objective		Time	PP
Demonstrato	(Region)	Company / SME	Pilot line /	Schedu	Responsi
r (Region)		needs	Demonstrator	le	ble
			capabilities		
			can directly		
			print brakes		
			it doosn't		
			need to		
			assemble		
			them. Benefits		
			in terms of		
			costs, quality		
			and reliability.		
			A pre-series		
			will be printed		
TEN Clavalia		Deduction of	in May 2020.	Amril	DIC
IEN SLOVAKIA	S/NE	time and costs	JUVAK	арті /Мау	Bratislay
(5K)	close to	related to	University	7 May 2020	a
	Bratislava	produced parts:	Bratislava.	2020	u
		Reduction of	Faculty of		
		weight of	Mechanical		
		specific parts for	engineering,		
		aviation industry	Institute of		
		from 200 kg to	Automation,		
		app. 18 kg; Kooping bigb	Measuring and		
		cuality	Informatics		
		standards:	(STU), one of		
		Reduction of	leading		
		potential	providers of		
		defects;	technologies		
		Question of	and know-how		
		temperature	in additive		
		field dynamics in	manufacturing		
		3D printing.	in Slovakia,		
			can provide		
			ranid		
			prototyning		
			and additive		
			manufacturing		
			technologies in		
			order to		
			deliver ultra-		
			light		
			aluminium		

Pilot Line /	Company	any Topic / Objective			Time PP		
Demonstrato	(Region)	Company / SME	Pilot line /	Schedu	Responsi		
r (Region)		needs	Demonstrator	le	ble		
			capabilities				
			composite				
			components				
			for aviation				
			industry				
			alicial				
			mounts)				
Sortinmachin	SCHOL7	Test with solid	The object is	lune	HS7G		
e (DE)	GmbH in	recovered fuel	to expand the	2020	Anett		
0 (22)	Saxony	to seperate	application	_0_0	Kupka		
	· · · · · ·	different caloric	areas of NFK				
		values (wood,	by adapting				
		PP/PE/PS)	processes and				
			technologies				
			that are				
			BEFORE and				
			AFIER the				
			actual				
			NEK products				
			These include				
			the extraction				
			of natural				
			fibres, the				
			downstream				
			recycling of				
			NFK products				
			at the end of				
			the product				
			life cycle and				
			the energetic				
			utilisation of				
			matorials				
FTOP	SMF in	Create of scale	The company	May/ Iu	LINI7A		
Alternative	Trencin	prototypes of	Etop	ne			
Energy (SK)	region in	products	Alternative	2020			
	Slovakia	F	Energy				
			develops new				
			products in				
			the energy				
			sector with				
			modern design				
			as are				

Pilot Line /	Company	Topic / Objective		Time	PP
Demonstrato	(Region)	Company / SME	Pilot line /	Schedu	Responsi
r (Region)		needs	Demonstrator	le	ble
			capabilities		
			fireplaces,		
			heat pumps		
			and also		
			different		
			decorative		
			reatures with		
			those products		
			want to print		
			to introduce		
			them to		
			potential		
			customers on a		
			smaller scale		
			(special design		
			of fireplace,		
			smart flower		
	-	222	pot).		
RIS3CAT 3D	Carrasco	3DP molds:	AM3DP	Ongoin	LEIIAI
Tooling / 3D	Tool	increase the rate	equipment:	g	
Incubator	ts Tallers	orfied	FDM, SLS, MJF,		
(Catalonia)	Fiestas	reduce the cycle	(cold gas		
(Catatonia)	Etow Tool	time, promote a	sprav)		
		better and faster	Atomizer for		
		distribution of	metal powder		
		temperatures on	production		
		the surface of	Mechanical		
		the mold,	polishing:		
		increase mold	sandblaster,		
		durability and	tumbler, shot		
		reduce	peening		
		maintenance	Chemical and		
		tasks	electrochemic		
			at potisiting Host		
			treatment		
			Organic.		
			metallic and		
			ceramic		
			coatings		
			Testing		
			facilities:		

Pilot Line /	Company	Topic / Objective		Time	PP
Demonstrato	(Region)	Company / SME	Pilot line /	Schedu	Responsi
r (Region)		needs	Demonstrator	le	ble
			capabilities		
			mechanical,		
			chemical,		
			physical,		
			microscopy,		
			fatigue,		
			ageing,		
			metrology, fire		
			resistance		
			/		
			Design and		
			redesign for		
			AM (DIAM &		
			DFM) Tanalagigal		
			optimization		
			and simulation		
			Matorials		
			materials		
			chemistry and		
			metallurgy		
			new metal		
			allovs for AM		
			SI M parameter		
			development		
			for new metal		
			powder allovs.		
			Study, analysis		
			and		
			implementatio		
			n of post-		
			processing		
			systems for 3D		
			printed parts		
			Coating and		
			functionalizati		
			on of 3D		
			printed parts		
			Tooling design		
			and production		
			testing		
			campaigns		
RECYC (CZ)	Plantiq,	Create	The Technical	Ongoin	TUL
	SME in	prototypes of	University in	g	
	Ostrava	products based	Liberec.		

Pilot Line /	Company	Topic / Objective		Time	PP
Demonstrato	(Region)	Company / SME	Pilot line /	Schedu	Responsi
r (Region)		needs	Demonstrator	le	ble
			capabilities		
	region in	on natural,	Institute for		
	Czech Rep.	recyclable	nanomaterials,		
		material to	Advanced		
		replace existing	technologies		
		plastic	and		
		components	Innovations,		
			leader in the		
			research,		
			development,		
			innovation and		
			development		
			01 tochnologios		
			technological		
			processes and		
			their		
			alternatives.		
			including the		
			monitoring and		
			optimization		
			of process		
			parameters		
			influencing the		
			final		
			properties of		
			parts produced		
			by advanced		
			and		
			progressive		
			non-chip-		
			producing		
			technologies		
			(plastics and		
			composites,		
			casting,		
			wolding		
			Arburg 2700		
			400-100		
			injection		
			molding		
			machine for		
			PIM		
			technology,		

Pilot Line /	Company	Topic / Objective		Time	PP
Demonstrato	(Region)	Company / SME	Pilot line /	Schedu	Responsi
r (Region)		needs	Demonstrator	le	ble
			capabilities		
			including an		
			Arburg		
			MULTILIFT H		
			robotic system		
			for a 270S		
			machine.		
			Furnaces for		
			PIM		
			technology.		
			Sintering		
			CIM tochoology		
			and sintering		
			furnaces for		
			MIM		
			technology		
			Injection		
			molding		
			machine		
			ARBURG 470 S		
			1000-400 with		
			the MuCell		
			technology		
			DSC1/700		
			Mettler Toledo		
			designated for		
			conducting		
			analysis using		
			differential		
			scan		
			calorimetry		
			method.		
SMART (C7)	Entry	Development of	XSTRESS C3	Ongoin	тш
	Engineerin	a new	3000 mohile	ongoin o	IUL
	g. SMF in	Lightweight	diffractometer	5	
	Liberec	construction	Sintering		
	region in	composite	furnaces for		
	Czech Rep	material with	CIM technology		
		intrinsic sensorv	and sintering		
		properties.	furnaces for		
		Exhancement of	MIM		
		safety of critical	technology.		

Pilot Line /	Company	Topic / Objective		Time	PP
Demonstrato	(Region)	Company / SME	Pilot line /	Schedu	Responsi
r (Region)		needs	Demonstrator	le	ble
			capabilities		
		components,	Impact devices		
		namely parts of	for head		
		chassis of	impacts.		
		vehicles	Vibration		
			device.		
			Data		
			acquisition		
			Detectors		
			sensors strain		
			dvnamometers		
			UHR FE-SEM		
			ZEISS Ultra		
			Plus		
			JPK SPM		
			NanoWizard 2		
			with AFM,		
			EFM, MFM,		
			CAF <i>I</i> M Plasma		
			chamber for		
			thin lavers		
			using RF		
			PACVD method		
			-		
FRP	CINNOMAT	Need of	Wrocław	ongoin	ITT/Letia
technology	ECH	technology of	Univeristy of	g	
(PL)	cluster,	compsites	Science and		
	Lower	elements (FRP)	I echnology		
	Silesia (PL)	The know how of	will provide		
		design and	innovation and		
		manufacture	services on		
		toolings for FRP	composite		
		parts	elements		
		manufacturing	- new		
			materials		
			development,		
			surface-		
			engineering,		
			technology for		

Pilot Line /	Company	Topic / Objective		Time	PP
Demonstrato	(Region)	Company / SME	Pilot line /	Schedu	Responsi
r (Region)		needs	Demonstrator	le	ble
			capabilities		
			layered FRP		
			metal (Fiber		
			Reinforced		
			Polymer)		
			composites -		
			TRL (up to 5-6)		
WrUST -	Cluster of	Research	Wrocław	ongoin	ITT/Letia
strength tests	Excellence	activities on	Univeristy of	g	
(PL)	MERGE,	designing	Science and		
	(Saxony)	flexible and	Technology		
		bending stand	will provide		
		for strength	research,		
		tests	innovative		
		Designing and	solution and		
		implementation	services (tests)		
		of a flexible and	on composite		
		bending stand	elements		
		tor strength	- new		
		lests of	materials		
		composite	development,		
		etements and for	surface-		
		Dovelopment of	TPL (up to 7)		
		ovporimontal	IRL(upto7)		
		solution/object/			
		stand			
		Shear tests of			
		composite			
		elements			
		within crash			
		tests			
University of		3DP of fibre	University of		
Barcelona/I F	ти	reinforced	Barcelona	Aug.	PP1.
ITAT	Chemnitz/	ceramics for new	provides	2019 -	PP11
	PT+A	environmentally	knowledge and	May	
	GmbH	friendly high	experiences	2020	
	Dresden	performance	with the 3DP		
		materials	of ceramics		
		-	For the fibre		
			reinforcement		
			s a special		
			technology		
			will be		
			developed and		

Pilot Line /	Company	Topic / Objective		Time	PP
Demonstrato	(Region)	Company / SME	Pilot line /	Schedu	Responsi
r (Region)		needs	Demonstrator	le	ble
			capabilities		
			tested, UB		
			received fibre		
			samples from		
			Chemnitz/Dres		
			den, the		
			involved		
			partners have		
			developed a		
			joint		
			workplan, first		
			results have		
			been		
			reviewed, a		
			F2F-meeting is		
			planned for		
			May 2020 in		
			Barcelona		
			Joint H20207		
			HEurope		
			opportunities		
			will be		
			assessed		