

- REEF2W -Increased renewable energy and energy efficiency by integrating, combining urban wastewater and organic waste management system
- Implementation of carbon footprint in the REEF 2W tool

KOMPETENZZENTRUM Wasser Berlin

Environmental Assessment (EA) Implementing of EA in REEF 2W

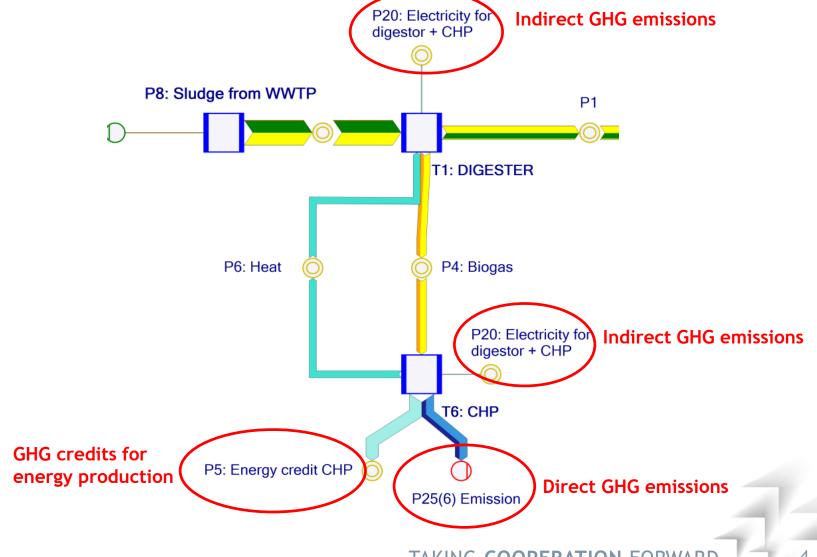
Selecting
Scenarios for
Berlin case study

Evaluation of Global Warming Potential for Berlin case study Conclusion

Environmental Assessment

What is Environmental Assessment (EA)?

The environmental assessment is a procedure that ensures that the environmental implications of decisions are taken into account before the decisions are made


How can EA be realized?

A suitable method to analyse the potential environmental impacts → Life Cycle Assessment (LCA, ISO 14040/44)

- Takes into account direct and indirect emissions (e.g. from electricity production in power plants)
- Internationally recognized for calculating carbon footprint

Implementing of EA Software UMBERTO® NXT LCA - Mass and energy balance

Implementing of EA GWP Factors used in REEF2W tool

LCA database ecoinvent v3.4

GWP Material / Process Unit Ecoinvent v3.4 dataset TPCC 2013 for 100a) market group for electricity, medium kg CO2-eq/kWh Electricity mix EU 0.39 voltage [RER] Electricity mix DE 0.627 kg CO2-eq/kWh lectricity, medium voltage [DE] market for electricity, medium voltage 0.295 kg CO2-eq/kWh Electricity mix AT market for electricity, medium voltage 0.381 kg CO2-eq/kWh Electricity mix IT market for electricity, medium voltage 0.286 kg CO2-eq/kWh Electricity mix HR market for electricity, medium voltage Electricity mix CZ 0,69 kg CO2-eq/kWh

LCA studies and models of previous research projects

Material / Process	GWP (IPCC 2013for 100a)	Unit	Description
N2O from biological treatment	2,5	kg CO2-eq/kg N in in- fluent	Wicht 1996
CH4 in sludge trea- tment	0,017	kg CO2-eq/kg TS in digestate	Estimate for CH4 emissions at centri- fuge
СНР	0,00347	kg CO2-eq/MJ CH4 in biogas	<u>Ronchetti</u> et al. 2002
flare	0,00347	kg CO2-eq/MJ CH4 in biogas	Ronchetti et al. 2002
Carbon source ace- tate	1,47	kg CO2-eq/kg acetate	Based on chemical formula
Carbon source me- thanol	1,375	kg CO2-eq/kg metha- nol	Based on chemical formula

 Calculation of global warming potential (GWP) for 100a (IPCC 2013) as important environmental impact of energy systems

Implementing of EA Categories of GHG emissions

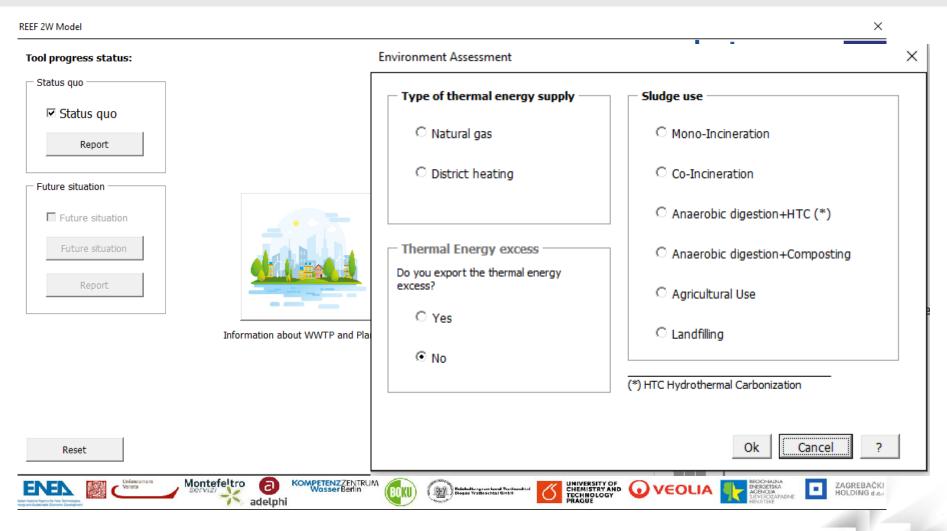
Two categories of GHG emissions are included in the REEF 2W tool:

- GHG emissions associated with the use of energy carriers (e.g. grid electricity, natural gas, heat, ...)
- GHG emissions of other relevant processes such as disposal of sludge, use of chemicals, or else.

Implementing of EA Calculation of GWP in REEF 2W tool

Example:

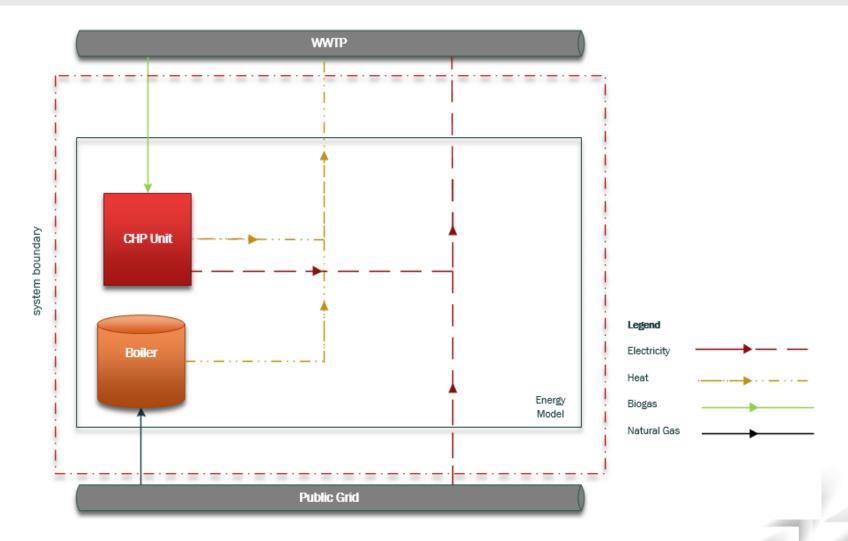
1 MWh/a \times 1000 kWh/MWh \times 0,69 kg CO₂-eq/kWh = 690 kg CO₂-eq/a



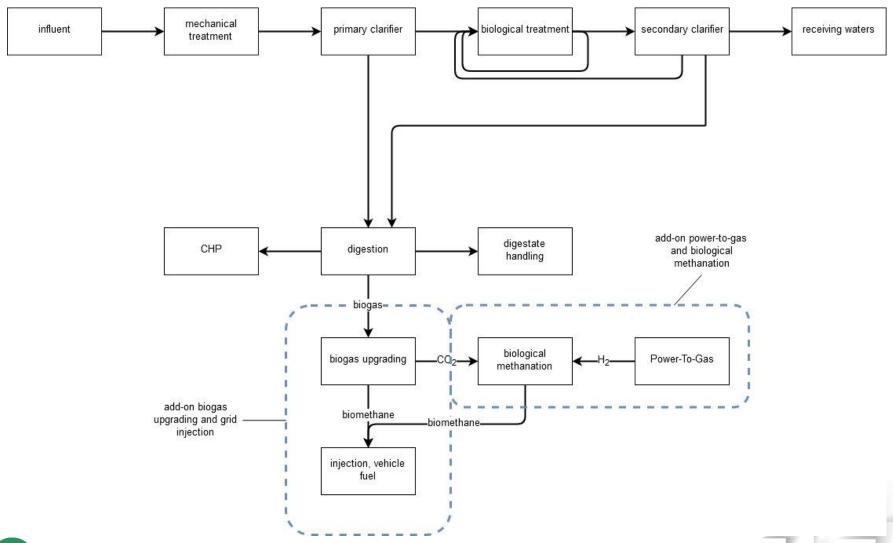
Implementing of EA Comparing status quo with REEF 2W scenario (= future)

CALCULATION	STATUS QUO	FUTURE SITUATION	-				
ENERGY							
Emission factor for energy from electrical grid	0,63	0,63	kg CO2-eq/kWh				
Net_external_elec_energy_demand	10324157,40	1000,00	kWh				
Carbon footprint elec. Energy	6473246,69	630,00	kg CO2-eq				
Emission factor for external heat supply	0,23	0,20	kg CO2-eq/kWh				
Net_external_th_energy_demand	0,00	10000,00	kWh				
Carbon footprint th. Energy	0,00	2000,00	kg CO2-eq				

Implementing of EA Comparing status quo with REEF 2W scenario (= future)



Selecting Scenarios for Berlin case study



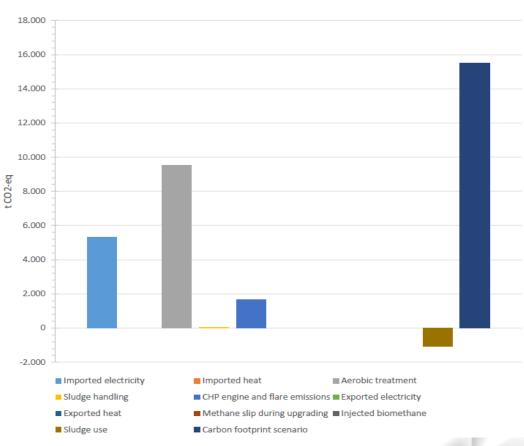
Selecting Scenarios Status Quo of Berlin WWTP

Pilot Site in Berlin WWTP: Scheme of the future scenarios

Input data for scenarios in Berlin case study

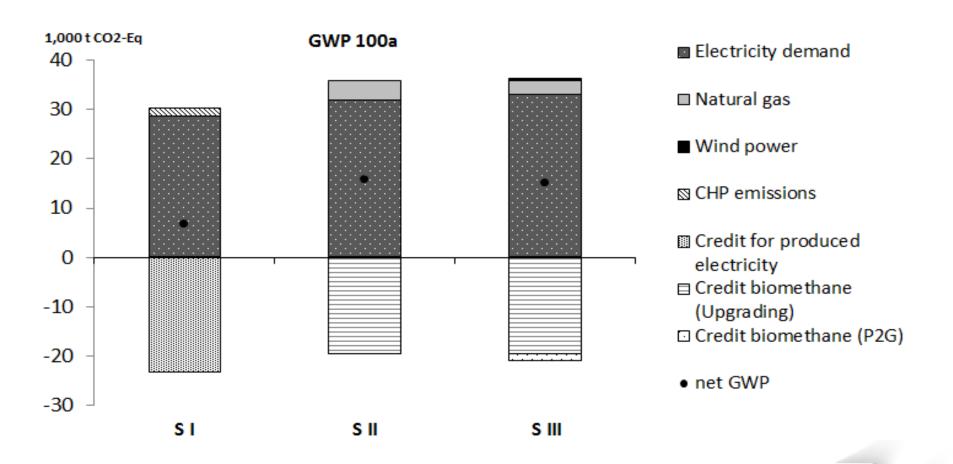
Scenario	СНР	Biogas upgrading sys-	Electrolyser for PtG
		tem	
Status quo (I)	6 MW	0 m ³ /h biogas	$0 \mathrm{MW}$
Scenario II	$0 \mathrm{MW}$	1800 m ³ /h biogas	$0 \mathrm{MW}$
Scenario III	$0 \mathrm{MW}$	1800 m ³ /h biogas	7.8 MW

Results of Environmental Assessment for Berlin case study

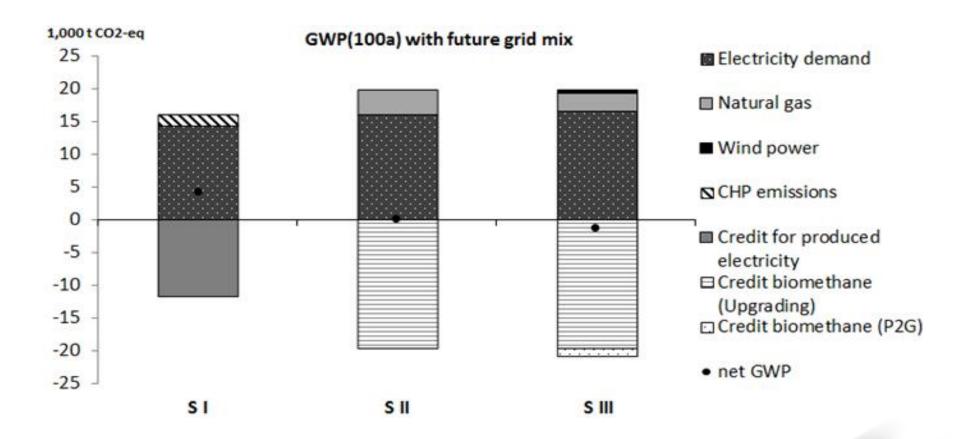


Assessment of the Global Warming Potential Result

Environment Assessment


Carbon footprint/credit for:

carbon rootpring credit for.	
Imported electricity	5326,88
Imported heat	NA
Aerobic treatment	9535,63
Sludge handling	36,21
CHP engine and flare emissions	1665,60
Exported electricity	NA
Exported heat	NA
Methane slip during upgrading	NA
Injected biomethane	NA
Sludge use	-1065,00
Carbon footprint scena	r io 15499,32



Assessment of the Global Warming Potential with electricity mix of 2014

Assessment of the Global Warming Potential with electricity mix of 2030

Take Home Message:

Biogas upgrading and injection in the gas grid:

- At the moment: no reduction of GWP, better to produce electricity with CHP and substitute current power mix with high GWP
- In the future: it can decrease the GWP if green electricity is in the grid

Power to Gas:

• It can decrease the GWP (if PtG uses excess renewable electricity available in the grid)

Contact details

Name: Mehdi Habibi

Kompetenzzentrum Wasser Berlin gGmbH

Project Acronym: REEF2W

www.kompetenz-wasser.de

Mehdi.habibi@kompetenz-wasser.de

Uff. +49 (0) 30 53653 - 820 Fax +49 (0) 30 53653 - 888

in

linkedIn.com/MehdiHabibi

Partners

Evaluation of Energy Balance

