

- Udine, 05/10/2021
- D.T3.3.2 Experience Exchange Workshop

Pilot implementation in Udine (Italy)

CITYCIRCLE | UNIVERSITA' DI UDINE | PATRIZIA SIMEONI, GIOVANNI CORTELLA,

MATTIA COTTES, MATIA MAINARDIS

WHERE WE STARTED FROM...

■ Industrial-Urban Symbiosis

- The presence in the area of two "service plants"
- The presence of an adjacent industrial area.
- The presence of thermal waste (heat otherwise dissipated) and fuels deriving from the construction of a waste treatment plant

Data collection

- Visits to the plants
- Analysis of technical documents

Technology identification

Waste recovery and energy efficiency oriented technologies

Scenario identification

Identification of best feasible scenarios based on different synergies combination possibilities

Preliminary solution

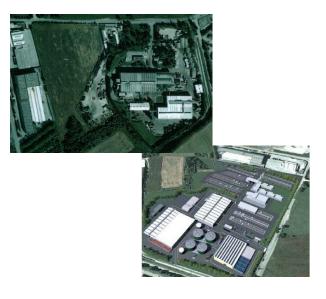
- Technical environmental assessment preliminary solutions identification
- Solutions' strength and weaknesses identification

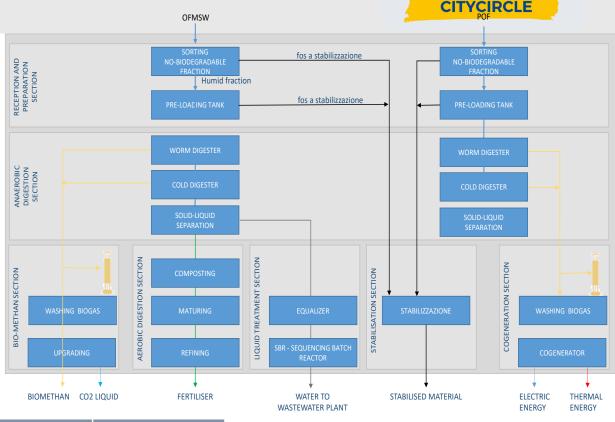
Businness model draft

- Business model structuring
- Technical economic environmental assessment solutions identification

Decision support system development

- Multi-objective modelling
- Scenario simulation


Best compromise solution identification



STAKEHOLDERS

CITYCIRCLE

NET S.p.A.

Parameters	Value
OFMSW amount treated in the plant (t/yr)	35,000
POF amount treated in the plant (t/yr)	19,000
Wood-cellulusic waste amount treated (t/yr)	12,500
Electric energy production (MWh/yr)	1,046
Bio-methan production from OFMSW (Nmc)	3,788,481
for veicles (Nmc)	400,000
electricity fed into the grid (Nmc)	3,388,481
Total amount of fertilizer (t/yr)	17,484
Stabilised waste to recovery/landfill (t/yr)	13,020
Liquid amount to the wastewater plant (t/yr)	31,025

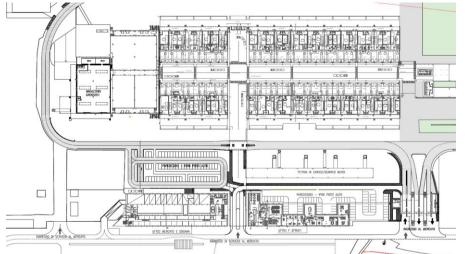
 \rightarrow 520 m³/h biogas

320 m³/h biogas

COOPERATION FORWARD

STAKEHOLDERS

CAFC S.p.A Influent Grid Biological treatment Secondary clarifier Disinfection Discharge Year 2018 Parameter **Year 2019** Electricity consumption (from the grid) 2,053,800 1,859,488 (kWh/yr) Electricity consumption (from biogas) (kWh/yr) Thickening Anaerobic digestion Dewatering Sludge disposal 541,337 574,572 Total electricity consumption (kWh/yr) 2,400,825 2,628,372 Heat consumption (from natural gas) (kWh/yr) 694,919 646,903 Heat consumption (from biogas) (kWh/yr) 400,000 336,000 Total thermal consumption (kWh/yr) 1,094,919 982,903 Treated wastewater (m3/month) 945,542 1,116,694 Sludge amount treated in the digester (m3/yr) 50,027 52,295 Specific biogas production (Nm3/m3 sludge) 5.41 5.51 1550 m³/d biogas Specific biogas production (Nm3/ton of volatile 160.30 171.74 solids-VS) Sludge desiccation unit electricity consumption **PLANNED** 1600 (MWh/yr)



STAKEHOLDERS

UDINE MERCATI s.r.LI

- Interested in renewing its facilities to improve internal logistic and reduce energy consumption
- Electric load:
 - Current: 400kWel
 - After revamping: + 200 kWel

TAKING COOPERATION FORWARD

- Visits to the plants
- Analysis of technical documents

Waste recovery and energy efficiency oriented technologies

Scenario identification

Identification of best feasible scenarios based on different synergies combination possibilities

Preliminary solution

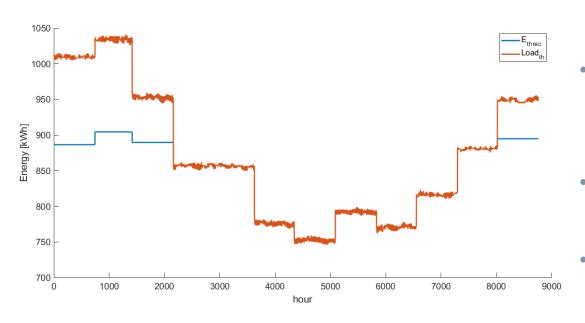
- Technical environmental assessment preliminary solutions identification
- Solutions' strength and weaknesses identification

Businness model draft

- Business model structuring
- Technical economic environmental assessment solutions identification

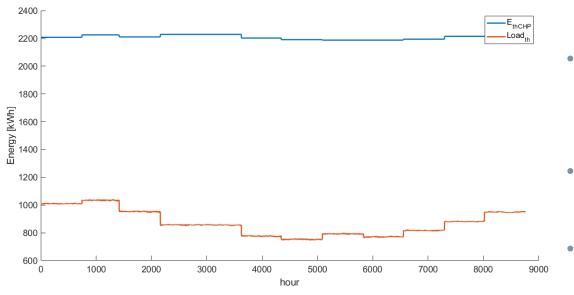
Decision support system development

- Multi-objective modelling
- Scenario simulation


Best compromise solution identification

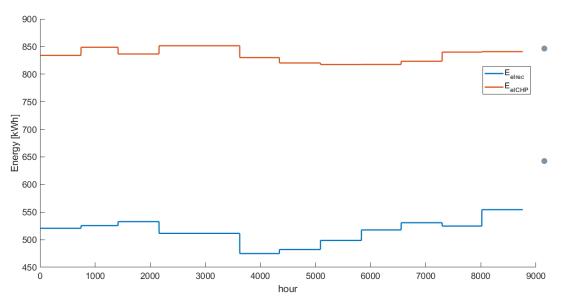
SCENARIOS: CAFC-NET SYMBIOSIS

- More than 7000 MWh thermal energy recovered
- 2357,6 tCO2 emission reduction
- 1034,5 toe primary energy saving



SCENARIOS: CAFC-NET SYMBIOSIS

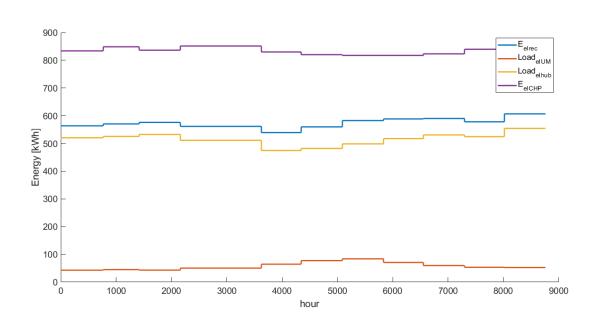
- Almost 8000 MWh thermal energy recovered
 - 2374 tCO2 emission reduction
 - 1041 toe primary energy saving

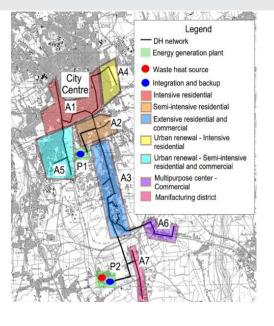


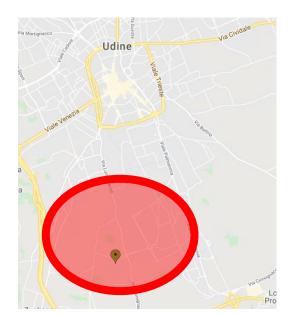
SCENARIOS: CAFC-NET SYMBIOSIS

- More than 4000 MWh electric energy recovered
- Recovery of remaining energy will lead to 522 toe primary energy saving

SCENARIOS: CAFC-NET + UDINE MERCATI SYMBIOSIS




- 5000 MWh electric energy recovered
- 2571,8 tCO2 emission reduction
- 1129,4 toe primary energy saving



SCENARIOS: CAFC-NET + DHN

- DHN:
 - 200 MW (10 in the hub surroundings)
 - 7000 MWh from CHP in heating period (15/10 to 15/4). 1,88 MW continuous

Work both as a user or as a source

Data collection

- Visits to the plants
- Analysis of technical documents

Technology identification

Waste recovery and energy efficiency oriented technologies

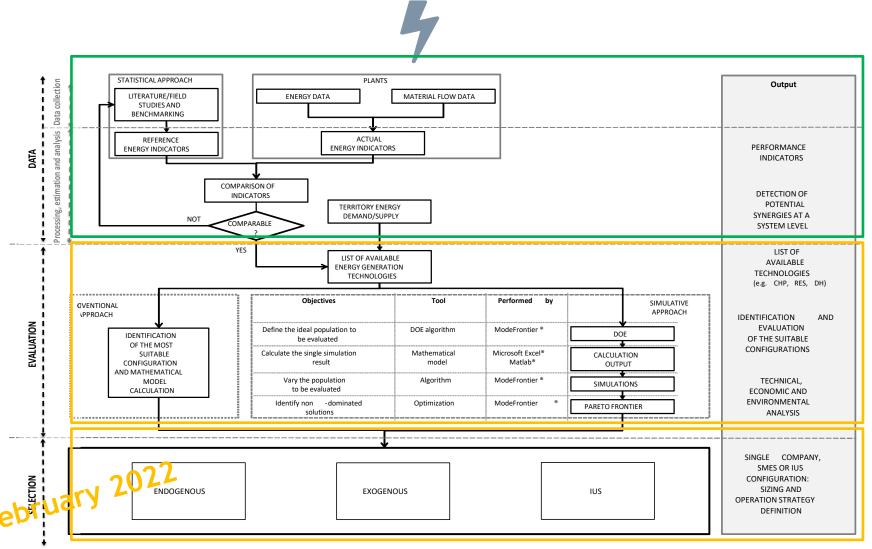
Scenario identification

Identification of best feasible scenarios based on different synergies combination possibilities

Preliminary solution

- Technical environmental assessment preliminary solutions identification
- Solutions' strength and weaknesses identification

Businness model draft


- Business model structuring
- Technical economic environmental assessment solutions identification

Decision support system development

- Multi-objective modelling
- Scenario simulation

Best compromise solution identification

LESSONS LEARNED

Highlights

 Data exchange and collaboration between stakeholders is very important to reach goals

Industrial symbiosys allows important energy recovery

CONTACT INFO

Mattia Cottes

Dipartimento Politecnico di Ingegneria e Architettura - DPIA UNIVERSITA' DI UDINE

CITYCIRCLE

https://www.uniud.it

 \bowtie

mattia.cottes@uniud.it

+39 0432 558030

f

https://www.facebook.com/uniud/

y

https://twitter.com/uniud

in

https://www.linkedin.com/school/universit%C3%A0-deglistudi-di-udine/

PROJECT PARTNERSHIP

